Section 4.3: Describing Area Over an Interval

Learning Objectives

In this section, you will:

  • Recognize the geometric shape created by the graph of a function and the x-axis.
  • Describe the area of a geometric shape that is defined by a function’s graph and another dimension that can vary.

Let’s Get Started…

Start thinking about finding areas with geometry with The Organic Chemistry Tutor’s Intro:

 

 

Then get more symbolic with this video on YouTube by James Hamblin:


Section 4.3 Exercises

This content comes directly from Matthew Boelkins’ open textbook Active Calculus Section 5.1 Constructing Accurate Graphs of Antiderivatives.

Access this resource for free at https://activecalculus.org/single/sec-5-1-antid-graphs.html

[Answers to odd problem numbers are provided at the end of the problem set.  Just scroll down!]

 

1.  Figure 1 below shows the graph of [latex]f[/latex].

 

image

Figure 1

 

If [latex]F'=f[/latex] and [latex]F\left(0\right)=0[/latex], find [latex]F\left(b\right)[/latex] for [latex]b=1, 2, 3, 4, 5, 6[/latex] and fill these values in the following table.

[latex]b[/latex] [latex]1[/latex] [latex]2[/latex] [latex]3[/latex] [latex]4[/latex] [latex]5[/latex] [latex]6[/latex]
[latex]F\left(b\right)[/latex]

 

2.  Consider the piecewise linear function [latex]f[/latex] given in Figure 2.  Let the functions [latex]A, B,[/latex] and [latex]C[/latex] be defined by the rules

[latex]A\left(x\right)=\int_{-1}^{x} f\left(t\right) \,dt, \;\; B\left(x\right)=\int_{0}^{x} f\left(t\right) \,dt, \;\;[/latex]and[latex]\;\;C\left(x\right)=\int_{1}^{x} f\left(t\right) \,dt.[/latex]

 

Figure 2

 

a.  For the values [latex]x=-1, 0, 1, 2, 3, 4, 5, 6[/latex] make a table that lists corresponding values of [latex]A\left(x\right), B\left(x\right),[/latex] and [latex]C\left(x\right)[/latex].

b.  Sketch graphs of [latex]A, B,[/latex] and [latex]C[/latex].

c. How are the graphs of [latex]A, B,[/latex] and [latex]C[/latex] related?

d.  How would you best describe the relationship between the function [latex]A[/latex] and the function [latex]f[/latex]?

 


Answers to Section 4.3 Problems

1.

[latex]b[/latex] [latex]1[/latex] [latex]2[/latex] [latex]3[/latex] [latex]4[/latex] [latex]5[/latex] [latex]6[/latex]
[latex]F\left(b\right)[/latex] -1 -2 -2.5 -2 -1 -0.5

 

2. a.

[latex]x[/latex] [latex]-1[/latex] [latex]0[/latex] [latex]1[/latex] [latex]2[/latex] [latex]3[/latex] [latex]4[/latex] [latex]5[/latex] [latex]6[/latex]
[latex]A\left(x\right)[/latex] 0 1 1.5 1 0 -0.5 0 1
[latex]B\left(x\right)[/latex] -1 0 0.5 0 -1 -1.5 -1 0
[latex]C\left(x\right)[/latex] -1.5 -0.5 0 -0.5 -1.5 -2 -1.5 -0.5

Note that [latex]A\left(x\right)=1+B\left(x\right)[/latex] and [latex]C\left(x\right)=B\left(x\right)-0.5[/latex].

b.  See Figure 3

Figure 3

c.  [latex]A, B,[/latex] and [latex]C[/latex] are vertical translations of each other.

d.  [latex]A'=f[/latex]

 

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Baylor University's Co-requisite Supplement for Calculus I Copyright © 2023 by Amy Graham Goodman is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book