Section 1.3: Rational Functions

Most of this content comes directly from OpenStax’s textbook Algebra and Trigonometry Section 1.6 Rational Expressions

Access this resource for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites


Learning Objectives

In this section, you will:

  • Simplify rational expressions.
  • Multiply rational expressions.
  • Divide rational expressions.
  • Add and subtract rational expressions.
  • Simplify complex rational expressions.
  • Simplify rational expressions by multiplying by a conjugate.

Let’s Get Started…

A pastry shop has fixed costs of[latex]\,\text{\$}280\,[/latex]per week and variable costs of[latex]\,\text{\$}9\,[/latex]per box of pastries. The shop’s costs per week in terms of[latex]\,x,[/latex]the number of boxes made, is[latex]\,280+9x.\,[/latex]We can divide the costs per week by the number of boxes made to determine the cost per box of pastries.

[latex]\frac{280+9x}{x}[/latex]

Notice that the result is a polynomial expression divided by a second polynomial expression. In this section, we will explore quotients of polynomial expressions.

Simplifying Rational Expressions

The quotient of two polynomial expressions is called a rational expression. We can apply the properties of fractions to rational expressions, such as simplifying the expressions by canceling common factors from the numerator and the denominator. To do this, we first need to factor both the numerator and denominator. Let’s start with the rational expression shown.

[latex]\frac{{x}^{2}+8x+16}{{x}^{2}+11x+28}[/latex]

We can factor the numerator and denominator to rewrite the expression.

[latex]\frac{{\left(x+4\right)}^{2}}{\left(x+4\right)\left(x+7\right)}[/latex]

Then we can simplify that expression by canceling the common factor[latex]\,\left(x+4\right).[/latex]

[latex]\frac{x+4}{x+7}[/latex]

 

How To

Given a rational expression, simplify it.

  1. Factor the numerator and denominator.
  2. Cancel any common factors.

 

EXAMPLE 1

Simplifying Rational Expressions

Simplify [latex]\,\frac{{x}^{2}-9}{{x}^{2}+4x+3}.[/latex]

 

Hide/Show Solution

image Analysis

We can cancel the common factor because any expression divided by itself is equal to 1.

 


image Q&A

Can the[latex]\,{x}^{2}\,[/latex]term be cancelled in Example 1?

No. A factor is an expression that is multiplied by another expression. The[latex]\,{x}^{2}\,[/latex]term is not a factor of the numerator or the denominator.


image Try It #1

Simplify[latex]\,\frac{x-6}{{x}^{2}-36}.[/latex]


Multiplying Rational Expressions

Multiplication of rational expressions works the same way as multiplication of any other fractions. We multiply the numerators to find the numerator of the product, and then multiply the denominators to find the denominator of the product. Before multiplying, it is helpful to factor the numerators and denominators just as we did when simplifying rational expressions. We are often able to simplify the product of rational expressions.

 

How To

Given two rational expressions, multiply them.

  1. Factor the numerator and denominator.
  2. Multiply the numerators.
  3. Multiply the denominators.
  4. Simplify.

 

EXAMPLE 2

Multiplying Rational Expressions

Multiply the rational expressions and show the product in simplest form:

[latex]\frac{\left(x+5\right)\left(x-1\right)}{3\left(x+6\right)}\cdot \frac{\left(2x-1\right)}{\left(x+5\right)}[/latex]

 

Show/Hide Solution

 


image Try It #2

Multiply the rational expressions and show the product in simplest form:

[latex]\frac{{x}^{2}+11x+30}{{x}^{2}+5x+6}\cdot \frac{{x}^{2}+7x+12}{{x}^{2}+8x+16}[/latex]


Dividing Rational Expressions

Division of rational expressions works the same way as division of other fractions. To divide a rational expression by another rational expression, multiply the first expression by the reciprocal of the second. Using this approach, we would rewrite

[latex]\,\frac{1}{x}÷\frac{{x}^{2}}{3}\,[/latex]

as the product

[latex]\,\frac{1}{x}\cdot \frac{3}{{x}^{2}}.\,[/latex]

Once the division expression has been rewritten as a multiplication expression, we can multiply as we did before.

[latex]\frac{1}{x}\cdot \frac{3}{{x}^{2}}=\frac{3}{{x}^{3}}[/latex]

 

How To

Given two rational expressions, divide them.

  1. Rewrite as the first rational expression multiplied by the reciprocal of the second.
  2. Factor the numerators and denominators.
  3. Multiply the numerators.
  4. Multiply the denominators.
  5. Simplify.

 

EXAMPLE 3

Dividing Rational Expressions

Divide the rational expressions and express the quotient in simplest form:

[latex]\frac{2{x}^{2}+x-6}{{x}^{2}-1}÷\frac{{x}^{2}-4}{{x}^{2}+2x+1}[/latex]

 

Show/Hide Solution

 


image Try It #3

Divide the rational expressions and express the quotient in simplest form:

[latex]\frac{9{x}^{2}-16}{3{x}^{2}+17x-28}÷\frac{3{x}^{2}-2x-8}{{x}^{2}+5x-14}[/latex]


Adding and Subtracting Rational Expressions

Adding and subtracting rational expressions works just like adding and subtracting numerical fractions. To add fractions, we need to find a common denominator. Let’s look at an example of fraction addition.

[latex]\begin{array}{ccc}\hfill \frac{5}{24}+\frac{1}{40}& =& \frac{25}{120}+\frac{3}{120}\hfill \\ & =& \frac{28}{120}\hfill \\ & =& \frac{7}{30}\hfill \end{array}[/latex]

We have to rewrite the fractions so they share a common denominator before we are able to add. We must do the same thing when adding or subtracting rational expressions.

The easiest common denominator to use will be the least common denominator, or LCD. The LCD is the smallest multiple that the denominators have in common. To find the LCD of two rational expressions, we factor the expressions and multiply all of the distinct factors. For instance, if the factored denominators were[latex]\,\left(x+3\right)\left(x+4\right)\,[/latex]and[latex]\,\left(x+4\right)\left(x+5\right),[/latex] then the LCD would be[latex]\,\left(x+3\right)\left(x+4\right)\left(x+5\right).[/latex]

Once we find the LCD, we need to multiply each expression by the form of 1 that will change the denominator to the LCD. We would need to multiply the expression with a denominator of

[latex]\,\left(x+3\right)\left(x+4\right)\,[/latex]by[latex]\,\frac{x+5}{x+5}\,[/latex]

and the expression with a denominator of

[latex]\,\left(x+4\right)\left(x+5\right)\,[/latex]by[latex]\,\frac{x+3}{x+3}.[/latex]

 

How To

Given two rational expressions, add or subtract them.

  1. Factor the numerator and denominator.
  2. Find the LCD of the expressions.
  3. Multiply the expressions by a form of 1 that changes the denominators to the LCD.
  4. Add or subtract the numerators.
  5. Simplify.

 

EXAMPLE 4

Adding Rational Expressions

Add the rational expressions:

[latex]\frac{5}{x}+\frac{6}{y}[/latex]

 

Show/Hide Solution

 


EXAMPLE 5

Subtracting Rational Expressions

Subtract the rational expressions:

[latex]\frac{6}{{x}^{2}+4x+4}-\frac{2}{{x}^{2}-4}[/latex]

 

Show/Hide Solution

 


image Q&A

Do we have to use the LCD to add or subtract rational expressions?

No. Any common denominator will work, but it is easiest to use the LCD.


image Try It #4

Subtract the rational expressions:[latex]\,\frac{3}{x+5}-\frac{1}{x-3}.[/latex]


Simplifying Complex Rational Expressions

A complex rational expression is a rational expression that contains additional rational expressions in the numerator, the denominator, or both. We can simplify complex rational expressions by rewriting the numerator and denominator as single rational expressions and dividing. The complex rational expression

[latex]\,\frac{a}{\frac{1}{b}+c}\,[/latex]

can be simplified by rewriting the numerator as the fraction

[latex]\,\frac{a}{1}\,[/latex]

and combining the expressions in the denominator as

[latex]\,\frac{1+bc}{b}.\,[/latex]

We can then rewrite the expression as a multiplication problem using the reciprocal of the denominator. We get

[latex]\,\frac{a}{1}\cdot \frac{b}{1+bc},[/latex]

which is equal to

[latex]\,\frac{ab}{1+bc}.[/latex]

 

How To

Given a complex rational expression, simplify it.

  1. Combine the expressions in the numerator into a single rational expression by adding or subtracting.
  2. Combine the expressions in the denominator into a single rational expression by adding or subtracting.
  3. Rewrite as the numerator divided by the denominator.
  4. Rewrite as multiplication.
  5. Multiply.
  6. Simplify.

 

EXAMPLE 6

Simplifying Complex Rational Expressions

Simplify:

[latex]\frac{y+\frac{1}{x}}{\frac{x}{y}}[/latex].

 

Show/Hide Solution

 


image Try It #5

Simplify:

[latex]\frac{\frac{x}{y}-\frac{y}{x}}{y}.[/latex]


image Q&A

Can a complex rational expression always be simplified?

Yes. We can always rewrite a complex rational expression as a simplified rational expression.


Multiplying by the Conjugate

The conjugate of a radical expression with two terms is the same two terms with the opposite sign between.

For example, the conjugate of[latex]\,1+\sqrt{x}\,[/latex]is[latex]\,1-\sqrt{x}\,[/latex], and the conjugate of[latex]\,\sqrt{x}-2\,[/latex]is[latex]\,\sqrt{x}+2.[/latex]

Multiplying the numerator and denominator by the conjugate of a radical expression can be a useful algebraic transformation because when the radical expression and its conjugate are F.O.I.L.ed, the ‘outside’ and ‘inside’ cancel.

Observe that

[latex]\begin{array}{ccc}\left(\sqrt{x}-2\right)^2\hfill & = \hfill & \left(\sqrt{x}\right)^2+2\sqrt{x}-2\sqrt{x}-4 \hfill & \\ \hfill & = \hfill & x-4 \hfill \end{array}[/latex]

 

How To

Simplify a radical expression by multiplying by a conjugate.

  1. Identify the radical expression.  Then, multiply both the numerator and denominator by its conjugate.
  2. F.O.I.L. the radical expression and its conjugate.  Do NOT F.O.I.L. the conjugate with any other terms.
  3. Cancel any common factors in the numerator and denominator.
  4. Simplify.

 

EXAMPLE 7

Simplifying a Rational Expression by Multiplying by a Conjugate

Simplify the rational expression below by multiplying by a conjugate.

[latex]\frac{\sqrt{x+2}-1}{x+1}[/latex]

 

Show/Hide Solution

 


image Try It #6

Simplify the rational expression below by multiplying by a conjugate.

[latex]\frac{3-\sqrt{x}}{x-9}[/latex].

 


Section 1.3 Exercises

[Answers to odd problem numbers are provided at the end of the problem set.  Just scroll down!]

Verbal

1.  How can you use factoring to simplify rational expressions?

 

2. How do you use the LCD to combine two rational expressions?

 

3. Tell whether the following statement is true or false and explain why: You only need to find the LCD when adding or subtracting rational expressions.

Algebraic

For the following exercises, simplify the rational expressions.

4.  [latex]\frac{{x}^{2}-16}{{x}^{2}-5x+4}[/latex]

 

5.  [latex]\frac{{y}^{2}+10y+25}{{y}^{2}+11y+30}[/latex]

 

6.  [latex]\frac{6{a}^{2}-24a+24}{6{a}^{2}-24}[/latex]

 

7.  [latex]\frac{9{b}^{2}+18b+9}{3b+3}[/latex]

 

8.  [latex]\frac{m-12}{{m}^{2}-144}[/latex]

 

9.  [latex]\frac{2{x}^{2}+7x-4}{4{x}^{2}+2x-2}[/latex]

 

10.  [latex]\frac{6{x}^{2}+5x-4}{3{x}^{2}+19x+20}[/latex]

 

 

11.  [latex]\frac{{a}^{2}+9a+18}{{a}^{2}+3a-18}[/latex]

 

12.  [latex]\frac{3{c}^{2}+25c-18}{3{c}^{2}-23c+14}[/latex]

 

13.  [latex]\frac{12{n}^{2}-29n-8}{28{n}^{2}-5n-3}[/latex]

 

For the following exercises, multiply the rational expressions and express the product in simplest form.

14[latex]\frac{{x}^{2}-x-6}{2{x}^{2}+x-6}\cdot \frac{2{x}^{2}+7x-15}{{x}^{2}-9}[/latex]

 

15.  [latex]\frac{{c}^{2}+2c-24}{{c}^{2}+12c+36}\cdot \frac{{c}^{2}-10c+24}{{c}^{2}-8c+16}[/latex]

 

16.  [latex]\frac{2{d}^{2}+9d-35}{{d}^{2}+10d+21}\cdot \frac{3{d}^{2}+2d-21}{3{d}^{2}+14d-49}[/latex]

 

17.  [latex]\frac{10{h}^{2}-9h-9}{2{h}^{2}-19h+24}\cdot \frac{{h}^{2}-16h+64}{5{h}^{2}-37h-24}[/latex]

 

18.  [latex]\frac{6{b}^{2}+13b+6}{4{b}^{2}-9}\cdot \frac{6{b}^{2}+31b-30}{18{b}^{2}-3b-10}[/latex]

 

19.  [latex]\frac{2{d}^{2}+15d+25}{4{d}^{2}-25}\cdot \frac{2{d}^{2}-15d+25}{25{d}^{2}-1}[/latex]

 

20.  [latex]\frac{6{x}^{2}-5x-50}{15{x}^{2}-44x-20}\cdot \frac{20{x}^{2}-7x-6}{2{x}^{2}+9x+10}[/latex]

 

21.  [latex]\frac{{t}^{2}-1}{{t}^{2}+4t+3}\cdot \frac{{t}^{2}+2t-15}{{t}^{2}-4t+3}[/latex]

 

22.  [latex]\frac{2{n}^{2}-n-15}{6{n}^{2}+13n-5}\cdot \frac{12{n}^{2}-13n+3}{4{n}^{2}-15n+9}[/latex]

 

23.  [latex]\frac{36{x}^{2}-25}{6{x}^{2}+65x+50}\cdot \frac{3{x}^{2}+32x+20}{18{x}^{2}+27x+10}[/latex]

 

For the following exercises, divide the rational expressions.

24.  [latex]\frac{3{y}^{2}-7y-6}{2{y}^{2}-3y-9}÷\frac{{y}^{2}+y-2}{2{y}^{2}+y-3}[/latex]

 

25.  [latex]\frac{6{p}^{2}+p-12}{8{p}^{2}+18p+9}÷\frac{6{p}^{2}-11p+4}{2{p}^{2}+11p-6}[/latex]

 

26.  [latex]\frac{{q}^{2}-9}{{q}^{2}+6q+9}÷\frac{{q}^{2}-2q-3}{{q}^{2}+2q-3}[/latex]

 

27.  [latex]\frac{18{d}^{2}+77d-18}{27{d}^{2}-15d+2}÷\frac{3{d}^{2}+29d-44}{9{d}^{2}-15d+4}[/latex]

 

28.  [latex]\frac{16{x}^{2}+18x-55}{32{x}^{2}-36x-11}÷\frac{2{x}^{2}+17x+30}{4{x}^{2}+25x+6}[/latex]

 

29.  [latex]\frac{144{b}^{2}-25}{72{b}^{2}-6b-10}÷\frac{18{b}^{2}-21b+5}{36{b}^{2}-18b-10}[/latex]

 

30.  [latex]\frac{16{a}^{2}-24a+9}{4{a}^{2}+17a-15}÷\frac{16{a}^{2}-9}{4{a}^{2}+11a+6}[/latex]

 

31.  [latex]\frac{22{y}^{2}+59y+10}{12{y}^{2}+28y-5}÷\frac{11{y}^{2}+46y+8}{24{y}^{2}-10y+1}[/latex]

 

32.  [latex]\frac{9{x}^{2}+3x-20}{3{x}^{2}-7x+4}÷\frac{6{x}^{2}+4x-10}{{x}^{2}-2x+1}[/latex]

 

For the following exercises, add and subtract the rational expressions, and then simplify.

33.  [latex]\frac{4}{x}+\frac{10}{y}[/latex]

 

34.  [latex]\frac{12}{2q}-\frac{6}{3p}[/latex]

 

35.  [latex]\frac{4}{a+1}+\frac{5}{a-3}[/latex]

 

36.  [latex]\frac{c+2}{3}-\frac{c-4}{4}[/latex]

 

37.  [latex]\frac{y+3}{y-2}+\frac{y-3}{y+1}[/latex]

 

38.  [latex]\frac{x-1}{x+1}-\frac{2x+3}{2x+1}[/latex]

 

39.  [latex]\frac{3z}{z+1}+\frac{2z+5}{z-2}[/latex]

 

40.  [latex]\frac{4p}{p+1}-\frac{p+1}{4p}[/latex]

 

41.  [latex]\frac{x}{x+1}+\frac{y}{y+1}[/latex]

 

For the following exercises, simplify the rational expression.

42.  [latex]\frac{\frac{6}{y}-\frac{4}{x}}{y}[/latex]

 

43.  [latex]\frac{\frac{2}{a}+\frac{7}{b}}{b}[/latex]

 

44.  [latex]\frac{\frac{x}{4}-\frac{p}{8}}{p}[/latex]

 

45.  [latex]\frac{\frac{3}{a}+\frac{b}{6}}{\frac{2b}{3a}}[/latex]

 

46.  [latex]\frac{\frac{3}{x+1}+\frac{2}{x-1}}{\frac{x-1}{x+1}}[/latex]

 

47.  [latex]\frac{\frac{a}{b}-\frac{b}{a}}{\frac{a+b}{ab}}[/latex]

 

48.  [latex]\frac{\frac{2x}{3}+\frac{4x}{7}}{\frac{x}{2}}[/latex]

 

49.  [latex]\frac{\frac{2c}{c+2}+\frac{c-1}{c+1}}{\frac{2c+1}{c+1}}[/latex]

 

50.  [latex]\frac{\frac{x}{y}-\frac{y}{x}}{\frac{x}{y}+\frac{y}{x}}[/latex]

 

51.  [latex]\frac{x-1}{\sqrt{x}-1}[/latex]

 

52.  [latex]\frac{2-\sqrt{x}}{4-x}[/latex]

 

53.  [latex]\frac{1-\sqrt{x-3}}{x-4}[/latex]

 

54.  [latex]\frac{x-9}{\sqrt{x-5}-2}[/latex]

 

Real-World Applications

55.  Brenda is placing tile on her bathroom floor. The area of the floor is[latex]\,15{x}^{2}-8x-7\,[/latex]ft2, as in Figure 1 The area of one tile is[latex]\,{x}^{2}-2x+1{\text{ft}}^{2}.\,[/latex]To find the number of tiles needed, simplify the rational expression:[latex]\,\frac{15{x}^{2}-8x-7}{{x}^{2}-2x+1}.[/latex]

 

A rectangle that’s labeled: Area = fifteen times x squared minus eight times x minus seven.

Figure 1

 

56.  The area of Sandy’s yard is[latex]\,25{x}^{2}-625\,[/latex]ft2. A patch of sod has an area of[latex]\,{x}^{2}-10x+25\,[/latex]ft2. Divide the two areas and simplify to find how many pieces of sod Sandy needs to cover her yard.

 

57.  Aaron wants to mulch his garden. His garden is[latex]\,{x}^{2}+18x+81\,[/latex]ft2. One bag of mulch covers[latex]\,{x}^{2}-81\,[/latex]ft2. Divide the expressions and simplify to find how many bags of mulch Aaron needs to mulch his garden.

 

Extensions

For the following exercises, perform the given operations and simplify.

58.  [latex]\frac{{x}^{2}+x-6}{{x}^{2}-2x-3}\cdot \frac{2{x}^{2}-3x-9}{{x}^{2}-x-2}÷\frac{10{x}^{2}+27x+18}{{x}^{2}+2x+1}[/latex]

 

59.  [latex]\frac{\frac{3{y}^{2}-10y+3}{3{y}^{2}+5y-2}\cdot \frac{2{y}^{2}-3y-20}{2{y}^{2}-y-15}}{y-4}[/latex]

 

60.  [latex]\frac{\frac{4a+1}{2a-3}+\frac{2a-3}{2a+3}}{\frac{4{a}^{2}+9}{a}}[/latex]

 

61.  [latex]\frac{{x}^{2}+7x+12}{{x}^{2}+x-6}÷\frac{3{x}^{2}+19x+28}{8{x}^{2}-4x-24}÷\frac{2{x}^{2}+x-3}{3{x}^{2}+4x-7}[/latex]

 


Answers to Section 1.3 Odd Problems

1. You can factor the numerator and denominator to see if any of the terms can cancel one another out.

 

3. True. Multiplication and division do not require finding the LCD because the denominators can be combined through those operations, whereas addition and subtraction require like terms.

 

5.  [latex]\frac{y+5}{y+6}[/latex]

 

7.  [latex]3b+3[/latex]

 

9.  [latex]\frac{x+4}{2x+2}[/latex]

 

11.  [latex]\frac{a+3}{a-3}[/latex]

 

13.  [latex]\frac{3n-8}{7n-3}[/latex]

 

15.  [latex]\frac{c-6}{c+6}[/latex]

 

17.  [latex]1[/latex]

 

19.  [latex]\frac{{d}^{2}-25}{25{d}^{2}-1}[/latex]

 

21.  [latex]\frac{t+5}{t+3}[/latex]

 

23.  [latex]\frac{6x-5}{6x+5}[/latex]

 

25.  [latex]\frac{p+6}{4p+3}[/latex]

 

27.  [latex]\frac{2d+9}{d+11}[/latex]

 

29.  [latex]\frac{12b+5}{3b-1}[/latex]

 

31.  [latex]\frac{4y-1}{y+4}[/latex]

 

33.  [latex]\frac{10x+4y}{xy}[/latex]

 

35.  [latex]\frac{9a-7}{{a}^{2}-2a-3}[/latex]

 

37.  [latex]\frac{2{y}^{2}-y+9}{{y}^{2}-y-2}[/latex]

 

39.  [latex]\frac{5{z}^{2}+z+5}{{z}^{2}-z-2}[/latex]

 

41.  [latex]\frac{x+2xy+y}{x+xy+y+1}[/latex]

 

43.  [latex]\frac{2b+7a}{a{b}^{2}}[/latex]

 

45.  [latex]\frac{18+ab}{4b}[/latex]

 

47.  [latex]a-b[/latex]

 

49.  [latex]\frac{3{c}^{2}+3c-2}{2{c}^{2}+5c+2}[/latex]

 

51.  [latex]\sqrt{x}+1[/latex]

 

53.  [latex]\frac{-1}{1+\sqrt{x-3}}[/latex]

 

55.  [latex]\frac{15x+7}{x-1}[/latex]

 

57.  [latex]\frac{x+9}{x-9}[/latex]

 

59.  [latex]\frac{1}{y+2}[/latex]

 

61.  [latex]4[/latex]

 

 

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Baylor University's Co-requisite Supplement for Calculus I Copyright © 2023 by Amy Graham Goodman is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book