Section 2.4: Properties of Trigonometric Functions

Most of the Pythagorean Identity content comes directly from E-Campus Ontario’s textbook Pre-Calculus Section 3.5 The Other Trigonometric Functions.

Access this resource for free at https://ecampusontario.pressbooks.pub/sccmathtechmath1/chapter/the-other-trigonometric-functions/

Most of the Double Angle Identity content comes directly from OpenStax’s textbook Pre-Calculus, 2nd edition Section 7.3:  Double-Angle, Half-Angle, and Reduction Formulas.

Access this resource for free at https://openstax.org/books/precalculus-2e/pages/7-3-double-angle-half-angle-and-reduction-formulas


Learning Objectives

In this section, you will:

  • Recall the 3 Pythagorean Identities.
  • Apply the 3 Pythagorean Identities to find exact vaues.
  • Recall the double-angle identities for sine and cosine.
  • Apply double-angle identities to find exact values.

Let’s Get Started…

Recall that the equation of the unit circle is [latex]{x}^{2}+{y}^{2}=1[/latex] and that, on the unit circle, we define the coordinates of a point [latex]P[/latex] with respect to the angle [latex]t[/latex] measured from the positive [latex]x-[/latex]axis to the point [latex]P[/latex] by

[latex]x = cos\left(t\right)[/latex] and [latex]y=sin\left(t\right)[/latex].

Substituting these definitions of [latex]x[/latex] and [latex]y[/latex] into the equation of the unit circle gives us the Pythagorean Identity.

 

The Pythagorean Identity

[latex]{\mathrm{cos}}^{2}\left(t\right)+{\mathrm{sin}}^{2}\left(t\right)=1[/latex]

 

Alternate Forms of the Pythagorean Identity

We can use this fundamental identity, plus the definitions of all 6 trigonometric functions, to derive alternate forms of the Pythagorean Identity, [latex]\,{\mathrm{cos}}^{2}\left(t\right)+{\mathrm{sin}}^{2}\left(t\right)=1.\,[/latex] One form is obtained by dividing both sides by [latex]\,{\mathrm{cos}}^{2}\left(t\right).[/latex]

[latex]\begin{array}{ccc}\hfill \frac{{\mathrm{cos}}^{2}\left(t\right)}{{\mathrm{cos}}^{2}\left(t\right)}+\frac{{\mathrm{sin}}^{2}\left(t\right)}{{\mathrm{cos}}^{2}\left(t\right)}& =& \frac{1}{{\mathrm{cos}}^{2}\left(t\right)}\hfill \\ \hfill & & & \hfill\\ \hfill 1+{\mathrm{tan}}^{2}\left(t\right)& =& {\mathrm{sec}}^{2}\left(t\right)\hfill \end{array}[/latex]

 

The other form is obtained by dividing both sides by [latex]\,{\mathrm{sin}}^{2}\left(t\right).[/latex]

[latex]\begin{array}{ccc}\hfill \frac{{\mathrm{cos}}^{2}\left(t\right)}{{\mathrm{sin}}^{2}\left(t\right)}+\frac{{\mathrm{sin}}^{2}\left(t\right)}{{\mathrm{sin}}^{2}\left(t\right)}& =& \frac{1}{{\mathrm{sin}}^{2}\left(t\right)}\hfill \\ \hfill & & & \hfill \\ \hfill {\mathrm{cot}}^{2}\left(t\right)+1& =& {\mathrm{csc}}^{2}\left(t\right)\hfill \end{array}[/latex]

 

Alternate Forms of the Pythagorean Identity

[latex]1+{\mathrm{tan}}^{2}\left(t\right)={\mathrm{sec}}^{2}\left(t\right)[/latex]

 

[latex]{\mathrm{cot}}^{2}\left(t\right)+1={\mathrm{csc}}^{2}\left(t\right)[/latex]

 

EXAMPLE 1

Using Identities to Relate Trigonometric Functions

If [latex]\,\mathrm{cos}\left(t\right)=\frac{12}{13}\,[/latex] and [latex]\,t\,[/latex] is in quadrant IV, as shown in Figure 1, find the values of the other five trigonometric functions.

 

This is an image of graph of circle with angle of t inscribed. Point of (12/13, y) is at intersection of terminal side of angle and edge of circle.

Figure 1

 

Show/Hide Solution

 


image  Try It #1

If [latex]\,\mathrm{sec}\left(t\right)=-\frac{17}{8}\,[/latex] and [latex]\,0 \lt t \lt \pi ,[/latex] find the values of the other five functions.


EXAMPLE 2

Finding the Values of Trigonometric Functions

Find the values of the six trigonometric functions of angle [latex]\,t\,[/latex] based on Figure 2.

 

This is an image of a graph of circle with angle of t inscribed. Point of (1/2, negative square root of 3 over 2) is at intersection of terminal side of angle and edge of circle.

Figure 2

 

Show/Hide Solution

 


image  Try It #2

Find the values of the six trigonometric functions of angle [latex]\,t\,[/latex] based on Figure 3.

 

This is an image of a graph of circle with angle of t inscribed. Point of (0, -1) is at intersection of terminal side of angle and edge of circle.

 

Figure 3


EXAMPLE 3

Finding the Value of Trigonometric Functions

If [latex]\,\mathrm{sin}\left(t\right)=-\frac{\sqrt{3}}{2}\,\text{and}\,\text{cos}\left(t\right)=\frac{1}{2},\text{find}\,\text{sec}\left(t\right),\text{csc}\left(t\right),\text{tan}\left(t\right),\text{cot}\left(t\right).[/latex]

 

Show/Hide Solution

 


image  Try It #3

[latex]\,\mathrm{sin}\left(t\right)=\frac{\sqrt{2}}{2}\,\text{and}\,\mathrm{cos}\left(t\right)=\frac{\sqrt{2}}{2},\text{find}\,\text{sec}\left(t\right),\text{csc}\left(t\right),\text{tan}\left(t\right),\text{and}\,\text{cot}\left(t\right)[/latex]


Double-Angle Identities

 

Picture of two bicycle ramps, one with a steep slope and one with a gentle slope.

Figure 4

 

Bicycle ramps made for competition see Figure 4 must vary in height depending on the skill level of the competitors. For advanced competitors, the angle formed by the ramp and the ground should be [latex]\theta[/latex] such that [latex]tan\left(\theta\right)=\frac{5}{3}[/latex].  The angle is divided in half for novices. What is the steepness of the ramp for novices? Now, we will investigate three additional categories of identities that we can use to answer questions such as this one.

Using Double-Angle Formulas to Find Exact Values

The double-angle formulas are a special case of the sum formulas for sine and cosine, where [latex]\alpha=\beta[/latex].  Deriving the double-angle formula for sine begins with its sum formula,

[latex]sin\left(\alpha+\beta\right)=sin\left(\alpha\right)cos\left(\beta\right)+cos\left(\alpha\right)sin\left(\beta\right)[/latex]

If we let [latex]\alpha=\beta=\theta[/latex], then we have

[latex]sin\left(\theta+\theta\right)=sin\left(\theta\right)cos\left(\theta\right)+cos\left(\theta\right)sin\left(\theta\right)[/latex]

or

[latex]sin\left(2\theta\right)=2sin\left(\theta\right)cos\left(\theta\right)[/latex]

 

Deriving the double-angle for cosine gives us three options. First, starting from the sum formula,

[latex]cos\left(\alpha+\beta\right)=cos\left(\alpha\right)cos\left(\beta\right)-sin\left(\alpha\right)sin\left(\beta\right)[/latex],

and letting [latex]\alpha=\beta=\theta[/latex], we have

[latex]cos\left(\theta+\theta\right)=cos\left(\theta\right)cos\left(\theta\right)-sin\left(\theta\right)sin\left(\theta\right)[/latex]

or

[latex]cos\left(2\theta\right)={cos}^{2}\left(\theta\right)-{sin}^{2}\left(\theta\right)[/latex]

Using the Pythagorean properties, we can expand this double-angle formula for cosine and get two more interpretations. The first one is:

[latex]cos\left(2\theta\right)={cos}^{2}\left(\theta\right)-{sin}^{2}\left(\theta\right)=\left(1-{sin}^{2}\left(\theta\right)\right)-{sin}^{2}\left(\theta\right)[/latex]

or

[latex]cos\left(2\theta\right)=1-2{sin}^{2}\left(\theta\right)[/latex]

The second interpretation is:

[latex]cos\left(2\theta\right)={cos}^{2}\left(\theta\right)-{sin}^{2}\left(\theta\right)={cos}^{2}\left(\theta\right)-\left(1-{cos}^{2}\left(\theta\right)\right)[/latex]

or

[latex]cos\left(2\theta\right)=2{cos}^{2}\left(\theta\right)-1[/latex]

 

 

Double-Angle Formulas

The double-angle formulas for sine and cosine are summarized as follows:

[latex]\begin{array}{ccc}\hfill sin\left(2\theta\right) & = & 2sin\left(\theta\right)cos\left(\theta\right) \hfill \\ \hfill & & & \hfill \\ \hfill \text{and} & & \hfill \\ \hfill & & & \hfill \\ \hfill cos\left(2\theta\right) & = & {cos}^{2}\left(\theta\right)-{sin}^{2}\left(\theta\right) \hfill \\ \hfill & = &  1-2{sin}^{2}\left(\theta\right)\hfill \\ \hfill & = & cos\left(2\theta\right)=2{cos}^{2}\left(\theta\right)-1\hfill \end{array}[/latex]

 

How To

Given the tangent of an angle and the quadrant in which it is located, use the double-angle formulas to find the exact value.

  1. Draw a triangle to reflect the given information.
  2. Determine the correct double-angle formula.
  3. Substitute values into the formula based on the triangle.
  4. Simplify.

 

EXAMPLE 4

Using a Double-Angle Formula to Find the Exact Value Involving Tangent

Given that [latex]tan\left(\theta\right)=-\frac{3}{4}[/latex] and [latex]\theta[/latex] is in Quadrant II, find [latex]sin\left(2\theta\right)[/latex] and [latex]cos\left(2\theta\right)[/latex].

 

Show/Hide Solution

 


image  Try It #4

Given [latex]sin\left(\alpha\right)=\frac{5}{8}[/latex] and [latex]\alpha[/latex] is in Quadrant I, find [latex]cos\left(2\alpha\right)[/latex].


EXAMPLE 5

Using the Double-Angle Formula for Cosine without Exact Values

Use the double-angle formula for cosine to write [latex]cos\left(6x\right)[/latex] in terms of [latex]cos\left(3x\right)[/latex].

 

Show/Hide Solution

 

image Analysis

This example illustrates that we can use the double-angle formula without having exact values. It emphasizes that the pattern is what we need to remember and that identities are true for all values in the domain of the trigonometric function.

 


Section 2.4 Exercises

[Answers to odd problem numbers are provided at the end of the problem set.  Just scroll down!]

These problems are from Stitz & Zeager’s open Precalculus textbook, version 3

1. [latex]sin\left(\theta\right)=\frac{3}{5}[/latex] with [latex]\theta[/latex] in Quadrant II

 

2. [latex]tan\left(\theta\right)=\frac{12}{5}[/latex] with [latex]\theta[/latex] in Quadrant III

 

3. [latex]csc\left(\theta\right)=\frac{25}{24}[/latex] with [latex]\theta[/latex] in Quadrant I

 

4. [latex]sec\left(\theta\right)=7[/latex] with [latex]\theta[/latex] in Quadrant IV

 

5. [latex]csc\left(\theta\right)=-\frac{10\sqrt{91}}{91}[/latex] with [latex]\theta[/latex] in Quadrant I

 

6. [latex]cot\left(\theta\right)=-23[/latex] with [latex]\theta[/latex] in Quadrant II

 

7. [latex]tan\left(\theta\right)=-2[/latex] with [latex]\theta[/latex] in Quadrant IV

 

8. [latex]sec\left(\theta\right)=-4[/latex] with [latex]\theta[/latex] in Quadrant II

 

9. [latex]cot\left(\theta\right)=\sqrt{5}[/latex] with [latex]\theta[/latex] in Quadrant III

 

10. [latex]csc\left(\theta\right)=\frac{1}{3}[/latex] with [latex]\theta[/latex] in Quadrant I

 

11. [latex]cot\left(\theta\right)=2[/latex] with [latex]0 \lt \theta \lt \frac{\pi}{2}.[/latex]

 

12. [latex]csc\left(\theta\right)=5[/latex] with [latex]\frac{\pi}{2} \lt \theta \lt \pi.[/latex]

 

13. [latex]tan\left(\theta\right)=\sqrt{10}[/latex] with [latex]\pi \lt \theta \lt \frac{3\pi}{2}.[/latex]

 

14. [latex]sec\left(\theta\right)=2\sqrt{5}[/latex] with [latex]\frac{3\pi}{2} \lt \theta \lt 2\pi.[/latex]

 

These problems are from OpenStax’sPrecalculus, 2nd edition textbook.

For the following exercises, find the exact values of [latex]sin\left(2\theta\right)[/latex] and [latex]cos\left(2\theta\right)[/latex] without solving for [latex]x[/latex]…

15. If [latex]sin\left(x\right)=\frac{1}{8}[/latex] and [latex]x[/latex] is in Quadrant I.

 

16. If [latex]cos\left(x\right)=\frac{2}{3}[/latex] and [latex]x[/latex] is in Quadrant I.

 

17. If [latex]cos\left(x\right)=-\frac{1}{2}[/latex] and [latex]x[/latex] is in Quadrant III.

 

18. If [latex]tan\left(x\right)=-8[/latex] and [latex]x[/latex] is in Quadrant IV.

 

For the following exercises, find the values of the six trigonometric functions if the conditions provided hold.

19. [latex]cos\left(2\theta\right)=\frac{3}{5}[/latex] and [latex]{90}^{\circ} \le \theta \le {180}^{\circ}[/latex]

 

20. [latex]cos\left(2\theta\right)=\frac{1}{\sqrt{2}}[/latex] and [latex]{180}^{\circ} \le \theta \le {270}^{\circ}[/latex]

 

For the following exercises, use Figure 6 to find the requested double angles.

 

Image of a right triangle. The base is length 12, and the height is length 5. The angle between the base and the height is 90 degrees, the angle between the base and the hypotenuse is theta, and the angle between the height and the hypotenuse is alpha degrees.

Figure 6

 

21. [latex]sin\left(2\alpha\right)[/latex] and [latex]cos\left(2\alpha\right)[/latex]

 

22. [latex]sin\left(2\theta\right)[/latex] and [latex]cos\left(2\theta\right)[/latex]

 


Answers to Section 2.4 Odd Problems

[latex]\begin{array}{cccc}\hfill 1. & \text{sin }\left(\theta\right)& = & \frac{3}{5}\hfill \\ \hfill & \text{cos }\left(\theta\right)& = & -\frac{4}{5}\hfill \\ \hfill & \text{tan }\left(\theta\right)& = & -\frac{3}{4}\hfill  \\ \hfill & \text{csc }\left(\theta\right)& = & \frac{5}{3}\hfill \\ \hfill & \text{sec }\left(\theta\right)& = & -\frac{5}{4}\hfill \\ \hfill & \text{cot }\left(\theta\right)& = & -\frac{4}{3}\hfill \end{array}[/latex]

 

[latex]\begin{array}{cccc}\hfill 3. & \text{sin }\left(\theta\right)& = & \frac{24}{25}\hfill \\ \hfill & \text{cos }\left(\theta\right)& = & \frac{7}{25}\hfill \\ \hfill & \text{tan }\left(\theta\right)& = & \frac{24}{7}\hfill  \\ \hfill & \text{csc }\left(\theta\right)& = & \frac{25}{24}\hfill \\ \hfill & \text{sec }\left(\theta\right)& = & \frac{25}{7}\hfill \\ \hfill & \text{cot }\left(\theta\right)& = & \frac{7}{24}\hfill \end{array}[/latex]

 

[latex]\begin{array}{cccc}\hfill 5. & \text{sin }\left(\theta\right)& = & -\frac{\sqrt{91}}{10}\hfill \\ \hfill & \text{cos }\left(\theta\right)& = & -\frac{3}{10}\hfill \\ \hfill & \text{tan }\left(\theta\right)& = & \frac{\sqrt{91}}{3}\hfill  \\ \hfill & \text{csc }\left(\theta\right)& = & -\frac{10\sqrt{91}}{91}\hfill \\ \hfill & \text{sec }\left(\theta\right)& = & -\frac{10}{3}\hfill \\ \hfill & \text{cot }\left(\theta\right)& = & \frac{3\sqrt{91}}{91}\hfill \end{array}[/latex]

 

[latex]\begin{array}{cccc}\hfill 7. & \text{sin }\left(\theta\right)& = & -\frac{2\sqrt{5}}{5}\hfill \\ \hfill & \text{cos }\left(\theta\right)& = & \frac{\sqrt{5}}{5}\hfill \\ \hfill & \text{tan }\left(\theta\right)& = & -2\hfill  \\ \hfill & \text{csc }\left(\theta\right)& = & -\frac{\sqrt{5}}{2}\hfill \\ \hfill & \text{sec }\left(\theta\right)& = & \sqrt{5}\hfill \\ \hfill & \text{cot }\left(\theta\right)& = & -\frac{1}{2}\hfill \end{array}[/latex]

 

[latex]\begin{array}{cccc}\hfill 9. & \text{sin }\left(\theta\right)& = & -\frac{\sqrt{6}}{6}\hfill \\ \hfill & \text{cos }\left(\theta\right)& = & -\frac{\sqrt{30}}{6}\hfill \\ \hfill & \text{tan }\left(\theta\right)& = & \frac{\sqrt{5}}{5}\hfill  \\ \hfill & \text{csc }\left(\theta\right)& = & -\sqrt{6}\hfill \\ \hfill & \text{sec }\left(\theta\right)& = & -\frac{\sqrt{30}}{5}\hfill \\ \hfill & \text{cot }\left(\theta\right)& = & \sqrt{5}\hfill \end{array}[/latex]

 

[latex]\begin{array}{cccc}\hfill 11. & \text{sin }\left(\theta\right)& = & \frac{\sqrt{5}}{5}\hfill \\ \hfill & \text{cos }\left(\theta\right)& = & \frac{2\sqrt{5}}{5}\hfill \\ \hfill & \text{tan }\left(\theta\right)& = & \frac{1}{2}\hfill  \\ \hfill & \text{csc }\left(\theta\right)& = & \sqrt{5}\hfill \\ \hfill & \text{sec }\left(\theta\right)& = & \frac{\sqrt{5}}{2}\hfill \\ \hfill & \text{cot }\left(\theta\right)& = & 2\hfill \end{array}[/latex]

 

[latex]\begin{array}{cccc}\hfill 13. & \text{sin }\left(\theta\right)& = & -\frac{\sqrt{110}}{11}\hfill \\ \hfill & \text{cos }\left(\theta\right)& = & -\frac{\sqrt{11}}{11}\hfill \\ \hfill & \text{tan }\left(\theta\right)& = & \sqrt{10} \hfill  \\ \hfill & \text{csc }\left(\theta\right)& = &- \frac{\sqrt{110}}{10}\hfill \\ \hfill & \text{sec }\left(\theta\right)& = & -\sqrt{11}\hfill \\ \hfill & \text{cot }\left(\theta\right)& = & \frac{\sqrt{10}}{10}\hfill \end{array}[/latex]

 

[latex]\begin{array}{cccc}\hfill 15. & \text{sin }\left(2\theta\right)& = & \frac{3\sqrt{7}}{132}\hfill \\ \hfill & \text{cos }\left(2\theta\right)& = & \frac{31}{32}\hfill  \end{array}[/latex]

 

[latex]\begin{array}{cccc}\hfill 17. & \text{sin }\left(2\theta\right)& = & \frac{\sqrt{3}}{2}\hfill \\ \hfill & \text{cos }\left(2\theta\right)& = & -\frac{1}{2}\hfill  \end{array}[/latex]

 

[latex]\begin{array}{cccc}\hfill 19. & \text{cos }\left(\theta\right)& = & -\frac{2\sqrt{5}}{5}\hfill \\ \hfill & \text{sin }\left(\theta\right)& = & \frac{\sqrt{5}}{5}\hfill  \\ \hfill & \text{tan }\left(\theta\right)& = & -\frac{1}{2}\hfill  \\ \hfill & \text{csc }\left(\theta\right)& = & \sqrt{5} \hfill  \\ \hfill & \text{sec }\left(\theta\right)& = & -\frac{\sqrt{5}}{2} \hfill  \\ \hfill & \text{cot }\left(\theta\right)& = & -2 \hfill \end{array}[/latex]

 

[latex]\begin{array}{cccc}\hfill 21. & sin\left(2\alpha\right) & = & \frac{120}{169}\hfill \\ \hfill & \text{cos }\left(2\alpha\right)& = & -\frac{119}{169}\hfill  \end{array}[/latex]

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Baylor University's Co-requisite Supplement for Calculus I Copyright © 2023 by Amy Graham Goodman is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book