Section 3.1: Strategies for Solving Equations Set = 0

Solving a Quadratic Set = 0

This content comes directly from OpenStax’s textbook Elementary Algebra Section 7.3 Factor Trinomials of the Form ax2+bx+c, Section 7.6 Quadratic Equations, and Section 10.3 Solve Quadratic Equations Using the Quadratic Formula

Access these resources for free at https://openstax.org/books/elementary-algebra-2e/pages/7-3-factor-trinomials-of-the-form-ax2-bx-c , https://openstax.org/books/elementary-algebra-2e/pages/7-6-quadratic-equations , and https://openstax.org/books/elementary-algebra-2e/pages/10-3-solve-quadratic-equations-using-the-quadratic-formula


Learning Objectives

In this section, you will:

  • Factor quadratics using trial and error
  • Factor quadratics using the ‘ac’ method
  • Solve quadratic equations by factoring
  • Solve quadratic equations using the Quadratic Formula
  • Solve rational equations
  • Use like bases to solve exponential equations.
  • Use logarithms to solve exponential equations.
  • Use the definition of a logarithm to solve logarithmic equations.
  • Use the one-to-one property of logarithms to solve logarithmic equations.

Let’s Get Started Factoring Quadratics using the Trial and Error Method

Recall that a quadratic in standard form is an expression that looks like [latex]a{x}^{2}+bx+c[/latex].  Once a quadratic is factored, it is easy to set it equal to 0 and solve.  The trick is properly factoring the quadratic.  So, that will be the focus of most of this part of the section.  The easiest case to factor is when the leading coefficient, [latex]a[/latex], is 1.  What happens when the leading coefficient of a quadratic is not 1?  There are several methods that can be used to factor these quadratics, and these methods work whether the leading coefficient is 1 or not. First we will use the Trial and Error Method.

Let’s factor the quadratic [latex]3{x}^{2}+5x+2[/latex].

Because the degree of a quadratic is 2, we expect 2 factors.  That is

[latex]\begin{array}{c}\hfill 3{x}^{2}+5x+2 \hfill \\ \hfill \text{will become} \hfill  \\ \hfill \left(?x \; \pm \; ?\right)\left(?x \; \pm \; ?\right).\hfill \end{array}[/latex]

We know the first terms of the two factors will multiply to give us [latex]3{x}^{2}[/latex].  The only factors of [latex]3{x}^{2}[/latex] are [latex]1x[/latex] and [latex]3x[/latex].  So, we can place them in the factors.

This figure has the polynomial 3 x^ 2 +5 x +2. Underneath there are two terms, 1 x, and 3 x. Below these are the two factors x and (3 x) being shown multiplied.

Check:  does  [latex]x\cdot 3x=3{x}^{2}[/latex]?  YES! [latex]\; \checkmark[/latex].

Now, we know the last terms of the factors will multiply to 2. Since this quadratic has all positive terms, we only need to consider positive factors. The only factors of 2 are 1 and 2. But we now have two cases to consider, as it will make a difference if we write 1, 2, or 2, 1.

This figure demonstrates the possible factors of the polynomial 3x^2 +5x +2. The polynomial is written twice. Underneath both, there are the terms 1x, 3x under the 3x^2. Also, there are the factors 1,2 under the 2 term. At the bottom of the figure there are two possible factorizations of the polynomial. The first is (x + 1)(3x + 2) and the next is (x + 2)(3x + 1).

Which factors are correct? To decide that, we multiply the inner and outer terms.

This figure demonstrates the possible factors of the polynomial 3 x^ 2 + 5 x +2. The polynomial is written twice. Underneath both, there are the terms 1 x, 3 x under the 3 x ^ 2. Also, there are the factors 1, 2 under the 2 term. At the bottom of the figure there are two possible factorizations of the polynomial. The first is (x + 1)(3 x + 2). Underneath this factorization are the products 3 x from multiplying the middle terms 1 and 3 x. Also there is the product of 2 x from multiplying the outer terms x and 2. These products of 3 x and 2 x add to 5 x. Underneath the second factorization are the products 6 x from multiplying the middle terms 2 and 3 x. Also there is the product of 1 x from multiplying the outer terms x and 1. These two products of 6 x and 1 x add to 7 x.

Since the middle term of the quadratic is [latex]5x[/latex], the factors in the first case will work. Let’s FOIL to check.

[latex]\begin{array}{c}\hfill \left(x+1\right)\left(3x+2\right)\hfill \\ \hfill 3{x}^{2}+2x+3x+2 \hfill  \\ \hfill 3{x}^{2}+5x+2 \; \checkmark\hfill \end{array}[/latex]

Therefore, our result of the factoring is:

[latex]\begin{array}{c}\hfill 3{x}^{2}+5x+2 \hfill \\ \hfill \left(x+1\right)\left(3x+2\right). \hfill  \end{array}[/latex]

 

How To

Factor quadratics of the form [latex]a{x}^{2}+bx+c[/latex] using the Trial and Error Method.

  1. Write the quadratic in descending order of degrees (standard form).
  2. Find all the factor pairs of [latex]a[/latex].
  3. Find all the factor pairs of [latex]c[/latex].
  4. Test all the possible combinations of the factors of [latex]a[/latex] and [latex]c[/latex] until the correct value of [latex]b[/latex] is found.
  5. Check by multiplying.

 

EXAMPLE 1

Factoring a Quadratic Using Trial and Error

Factor completely: [latex]3{y}^{2}+22y+7[/latex].

 

Show/Hide Solution

 


EXAMPLE 2

Factoring a Quadratic Using Trial and Error

Factor completely: [latex]6{b}^{2}−13b+5[/latex].

 

Show/Hide Solution

 


image  Try It #1

Factor completely: [latex]2{a}^{2}+5a+3[/latex].


When Coefficients Do Not Share a Common Factor  

When we factor a quadratic, we always look for a common factor among the coefficients first. If the quadratic’s coefficients do not have a common factor, there cannot be one in its factors either.This may help us eliminate some of the possible factor combinations.

EXAMPLE 3

Factoring a Quadratic Using Trial and Error and NO Common Factors

Factor completely: [latex]14{x}^{2}−47x-7[/latex].

 

Show/Hide Solution

 


EXAMPLE 4

Factoring a Quadratic Using Trial and Error and NO Common Factors

Factor completely: [latex]15-37n+18{n}^{2}[/latex].

 

Show/Hide Solution

 


image  Try It #2

Factor completely: [latex]18{x}^{2}−3x−10[/latex].


When Coefficients Do Share a Common Factor  

Before factoring with the Trial and Error Method, look to see if the 3 coefficients of a quadratic share any common factors.  If they do, make your first step to factor away the greatest common factor (GCF) from all 3 terms.  This will reduce the number of possible combinations for factors of [latex]a[/latex] and [latex]c[/latex]. Then, proceed with the Trial and Error Method on the reduced quadratic.  The complete factorization will be the factors of the reduced quadratic times the GCF.

 

EXAMPLE 5

Factoring a Quadratic Using Trial and Error and a GCF

Factor completely: [latex]10{y}^{4}+55{y}^{3}+60{y}^{2}[/latex].

 

Show/Hide Solution

 


image  Try It #3

Factor completely: [latex]15{n}^{3}−85{n}^{2}+100n[/latex].


Factoring Quadratics using the “[latex]ac[/latex]” Method

Another way to factor quadratics of the form [latex]a{x}^{2}+bx+c[/latex] is the “[latex]ac[/latex]” Method. (The “[latex]ac[/latex]” method is sometimes called the Grouping Method.) The “[latex]ac[/latex]” Method is very structured (that is step-by-step), and it always works!

EXAMPLE 6

Factoring a Quadratic Using the “[latex]ac[/latex]” Method

Factor completely: [latex]6{x}^{2}+7x+2[/latex].

 

Show/Hide Solution

 

 

How To

Factor trinomials of the form using the “[latex]ac[/latex]” method.

  1. Factor out any GCF.
  2. Write the quadratic in descending order.
  3. Find the product [latex]ac[/latex].
  4. Find two numbers, [latex]m[/latex] and [latex]n[/latex], such that  they:

    [latex]\begin{array}{cc}\hfill \text{Multiply to} \;ac  & m \cdot n = a \cdot c \hfill \\ \hfill \text{Add to} \; b & m+n=b. \hfill  \end{array}[/latex]

  5. Split the middle term using [latex]m[/latex] and [latex]n[/latex]:

    [latex]\begin{array}{c}\hfill a{x}^{2}+bx+c \hfill \\ \hfill \text{becomes} \hfill \\ \hfill a{x}^{2}+mx+nx+c \hfill  \end{array}[/latex]

  6. Factor by grouping.
  7. Check by multiplying the factors.

 

EXAMPLE 7

Factoring a Quadratic Using the [latex]ac[/latex] Method

Factor completely: [latex]8{u}^{2}−17u−21[/latex].

 

Show/Hide Solution

 


image  Try It #4

Factor completely: [latex]120{h}^{2}+13h−15[/latex].


Solving a Factored Quadratic Equation Set = 0

As we said in the beginning, the tricky part is factoring the quadratic.  Now that you have gotten lots of practice, we will use the Zero Factory Property to complete the solution.

 

The Zero Factor Property

If [latex]a \cdot b=0[/latex], then either [latex]a=0[/latex] or [latex]b=0[/latex] or both.

 

This means, once we have factored the quadratic into two factors, we can set each factor equal to zero and solve for all possible values of the variable that could make the quadratic equation equal zero.

 

EXAMPLE 8

Solving a Factored Quadratic Set = 0

Use the factored forms of each quadratic in Examples 1 – 7 to find all solutions when each is set equal to zero.

 

Show/Hide Solution

 


Solving an Quadratic Equation That Won’t Factor and is Set = 0

One nice feature of the last 8 examples is that every quadratic factored.  What happens when a quadratic equation set equal to 0 does NOT factor?  We have to use the Quadratic Formula.  It’s worth noting that the Quadratic Formula always finds the solution to a quadratic equation set equal to 0, whether the quadratic factors or not.  However, if the quadratic does factor, it is usually faster and easier to go that route.  Of course, if the quadratic doesn’t factor – or you find the factoring process for a quadratic too complicated – the Quadratic Formula is your answer.

 

The Quadratic Formula

The solutions to a quadratic equation of the form [latex]a{x}^{2}+bx+c=0[/latex], [latex]a \ne 0[/latex] are given by the formula:

[latex]x=\frac{-b \pm \sqrt{{b}^{2}-4ac}}{2a}[/latex]

 

The quadratic formula comes from solving [latex]a{x}^{2}+bx+c=0[/latex] by completing the square.  The process looks like this…

[latex]\begin{array}{ccc}\hfill a{x}^{2}+bx+c & = & 0  \hfill \\ \hfill {x}^{2}+\frac{b}{a}x+\frac{c}{a} & = & 0 \hfill \\ \hfill {x}^{2}+\frac{b}{a}x & = & -\frac{c}{a} \hfill \\ \hfill \textcolor{#52D017}{{\left(-\frac{b}{2a}\right)}^{2}} &\textcolor{#52D017}{=} & \textcolor{#52D017}{\frac{{b}^{2}}{4{a}^{2}}} \hfill \\ \hfill {x}^{2}+\frac{b}{a}x +\textcolor{#52D017}{\frac{{b}^{2}}{4{a}^{2}}} & = & \textcolor{#52D017}{\frac{{b}^{2}}{4{a}^{2}}}-\frac{c}{a} \hfill \\ \hfill {\left(x+\frac{b}{2a}\right)}^{2} & = & \frac{{b}^{2}-4ac}{4{a}^{2}} \hfill \\ \hfill \sqrt{{\left(x+\frac{b}{2a}\right)}^{2}}& = & \sqrt{\frac{{b}^{2}-4ac}{4{a}^{2}}} \hfill \\ \hfill x+\frac{b}{2a} & = & \frac{\pm \sqrt{{b}^{2}-4ac}}{2a} \hfill \\ \hfill x & = & \frac{-b \pm \sqrt{{b}^{2}-4ac}}{2a} \hfill \end{array}[/latex]

 

How To

Solve a quadratic equation using the Quadratic Formula.

  1. Write the Quadratic Formula in standard form. Identify the [latex]a[/latex], [latex]b[/latex], and [latex]c[/latex] values.
  2. Write the Quadratic Formula. Then substitute in the values of [latex]a[/latex], [latex]b[/latex], and [latex]c[/latex]
  3. Simplify.
  4. Check the solutions.

 

EXAMPLE 9

Solving a Quadratic Equation Using the Quadratic Formula

Solve [latex]{x}^{2}-6x+5=0[/latex] by using the Quadratic Formula.

 

Show/Hide Solution

 


EXAMPLE 10

Solving a Quadratic Equation Using the Quadratic Formula

Solve [latex]4{y}^{2}−5y−3=0[/latex]by using the Quadratic Formula.

 

Show/Hide Solution

 


EXAMPLE 11

Solving a Quadratic Equation Using the Quadratic Formula

Solve [latex]3{p}^{2}+2p+9=0[/latex]by using the Quadratic Formula.

 

Show/Hide Solution

 


image  Try It #5

Solve [latex]3{m}^{2}+12m+7=0[/latex] by using the Quadratic Formula.


image  Try It #6

Solve [latex]4{a}^{2}−3a+8=0[/latex] by using the Quadratic Formula.


Solving a Rational Set = 0

This content comes directly from OpenStax’s textbook Elementary Algebra Section 8.6 Solve Rational Equations

Access this resource for free at https://openstax.org/books/elementary-algebra-2e/pages/8-6-solve-rational-equations

Recall that a rational function is the quotient of two polynomial functions.  That is

 

[latex]\text{Rational}=\frac{\text{Top Polynomial}}{\text{Bottom Polynomial}}.[/latex]

 

A rational function in this form will only equal zero where the Top Polynomial = 0.  (The rational function will be undefined where the Bottom Polynomial = 0.)  So, the strategy, when solving an equation with rational terms, is to move all terms to one side of the equation and find a common denominator.  From there, solving is just a matter of setting the Top = 0.

 

How To

Solve an equation with rational terms that is set equal to 0.

  1. Move all terms to one side of the equation.
  2. Find a common denominator for all terms.  (Use their Least Common Multiple.)
  3. Set the top of your new, combined rational term = 0.
  4. Solve.
  5. Check by substituting your answer(s) into the original equation.

 

EXAMPLE 12

Solve a Rational Equation Set = 0

Solve [latex]1−\frac{5}{y}=−\frac{6}{{y}^{2}}[/latex].

 

Show/Hide Solution

 


EXAMPLE 13

Solve a Rational Equation Set = 0

Solve [latex]\frac{2}{p+2}+\frac{4}{p-2}=\frac{p-1}{{p}^{2}-4}[/latex].

 

Show/Hide Solution

 


EXAMPLE 14

Solve a Rational Equation Set = 0

Solve [latex]\frac{z}{2z+8}-\frac{3}{4z-8}=\frac{3{z}^{2}-16z-16}{8{z}^{2}+16z-64}[/latex].

 

Show/Hide Solution

 


image  Try It #6

Solve [latex]\frac{y}{y+8}=\frac{128}{{y}^{2}-64}+9[/latex].


Solving Exponential Equations

This content comes directly from OpenStax’s textbook Algebra and Trigonometry Section 6.6 Solve Rational Equations

Access this resource for free at https://openstax.org/books/algebra-and-trigonometry-2e/pages/6-6-exponential-and-logarithmic-equations

Let’s Start by Using Like Bases to Solve Exponential Equations

The first technique involves two functions with like bases. Recall that the one-to-one property of exponential functions tells us that, for any real numbers[latex]\,b,[/latex] [latex]S,[/latex] and[latex]\,T,[/latex] where[latex]\,b>0,\text{ }b\ne 1,[/latex][latex]{b}^{S}={b}^{T}\,[/latex]if and only if[latex]\,S=T.[/latex]

In other words, when an exponential equation has the same base on each side, the exponents must be equal. This also applies when the exponents are algebraic expressions. Therefore, we can solve many exponential equations by using the rules of exponents to rewrite each side as a power with the same base. Then, we use the fact that exponential functions are one-to-one to set the exponents equal to one another, and solve for the unknown.

For example, consider the equation[latex]\,{3}^{4x-7}=\frac{{3}^{2x}}{3}.\,[/latex]To solve for[latex]\,x,[/latex] we use the division property of exponents to rewrite the right side so that both sides have the common base,[latex]\,3.\,[/latex]Then we apply the one-to-one property of exponents by setting the exponents equal to one another and solving for[latex]\,x:[/latex]

[latex]\begin{array}{cccc}\,\,{3}^{4x-7}\hfill & =& \frac{{3}^{2x}}{3}\hfill & \hfill \\ \,\,{3}^{4x-7}\hfill & =& \frac{{3}^{2x}}{{3}^{1}}\hfill & {\text{Rewrite 3 as 3}}^{1}.\hfill \\ \,\,{3}^{4x-7}\hfill & = & {3}^{2x-1}\hfill & \text{Use the division property of exponents}\text{.}\hfill \\ 4x-7\hfill & =& 2x-1\,\,\text{ }\hfill & \text{Apply the one-to-one property of exponents}\text{.}\hfill \\ \,\,\,\,\,2x\hfill & =& 6\hfill & \text{Subtract 2}x\text{ and add 7 to both sides}\text{.}\hfill \\ \,\,\,\,\,\,\,x\hfill & =& 3\hfill & \text{Divide by 3}\text{.}\hfill \end{array}[/latex]

 

Using the One-to-One Property of Exponential Functions to Solve Exponential Equations

For any algebraic expressions[latex]\,S\text{ and }T,[/latex] and any positive real number[latex]\,b\ne 1,[/latex]

[latex]{b}^{S}={b}^{T}\,\,\text{if and only if}\,\,S=T[/latex].

 

How To

Given an exponential equation with the form[latex]\,{b}^{S}={b}^{T},[/latex] where [latex]\,S\,[/latex] and [latex]\,T\,[/latex] are algebraic expressions with an unknown, solve for the unknown.

  1. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form[latex]\,{b}^{S}={b}^{T}.[/latex]
  2. Use the one-to-one property to set the exponents equal.
  3. Solve the resulting equation,[latex]\,S=T,[/latex] for the unknown.

 

EXAMPLE 15

Solving an Exponential Equation with a Common Base

Solve[latex]\,{2}^{x-1}={2}^{2x-4}.[/latex]

 

Show/Hide Solution

[latex]\begin{array}{cccc} {2}^{x-1} & = & {2}^{2x-4} \hfill & \text{The common base is }2.\hfill \\ \text{ }x-1 & = & 2x-4 \begin{array}{cccc}& & & \end{array}\hfill & \text{By the one-to-one property the exponents must be equal}.\hfill \\ \text{ }\,\,x & = & 3\hfill & \text{Solve for }x.\hfill \end{array}[/latex]

 


image  Try It #7

Solve[latex]\,{5}^{2x}={5}^{3x+2}.[/latex]


Rewriting Equations So All Powers Have the Same Base

Sometimes the common base for an exponential equation is not explicitly shown. In these cases, we simply rewrite the terms in the equation as powers with a common base, and solve using the one-to-one property.

For example, consider the equation[latex]\,256={4}^{x-5}.\,[/latex]We can rewrite both sides of this equation as a power of[latex]\,2.\,[/latex]Then we apply the rules of exponents, along with the one-to-one property, to solve for[latex]\,x:[/latex]

[latex]\begin{array}{ll}256={4}^{x-5}\hfill & \hfill \\ \,\,\,{2}^{8}={\left({2}^{2}\right)}^{x-5}\hfill & \text{Rewrite each side as a power with base 2}.\hfill \\ \,\,\,{2}^{8}={2}^{2x-10}\hfill & \text{Use the one-to-one property of exponents}.\hfill \\ \,\,\,\,\,\,8=2x-10\begin{array}{cccc}& & & \end{array}\hfill & \text{Apply the one-to-one property of exponents}.\hfill \\ \,\,\,18=2x\hfill & \text{Add 10 to both sides}.\hfill \\ \,\,\,\,\,\,x=9\hfill & \text{Divide by 2}.\hfill \end{array}[/latex]

 

How To

Given an exponential equation with unlike bases, use the one-to-one property to solve it.

  1. Rewrite each side in the equation as a power with a common base.
  2. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form[latex]\,{b}^{S}={b}^{T}.[/latex]
  3. Use the one-to-one property to set the exponents equal.
  4. Solve the resulting equation,[latex]\,S=T,[/latex] for the unknown.

 

EXAMPLE 16

Solving Equations by Rewriting Them to Have a Common Base

Solve[latex]\,{8}^{x+2}={16}^{x+1}.[/latex]

 

Show/Hide Solution

[latex]\begin{array}{cccc}\,\text{ }{8}^{x+2} & = & {16}^{x+1}\hfill & \hfill \\ {\left({2}^{3}\right)}^{x+2} & = & {\left({2}^{4}\right)}^{x+1}\hfill & \text{Write }8\text{ and }16\text{ as powers of }2.\hfill \\ \text{ }{2}^{3x+6} & = & {2}^{4x+4}\hfill & \text{To take a power of a power, multiply exponents}.\hfill \\ \text{ }3x+6 & = & 4x+4\hfill & \text{Use the one-to-one property to set the exponents equal}.\hfill \\ \,\text{ }x & = & 2\hfill & \text{Solve for }x.\hfill \end{array}[/latex]

 


image  Try It #8

Solve[latex]\,{5}^{2x}={25}^{3x+2}.[/latex]


EXAMPLE 17

Solving Equations by Rewriting Roots with Fractional Exponents to Have a Common Base

Solve[latex]\,{2}^{5x}=\sqrt{2}.[/latex]

 

Show/Hide Solution

[latex]\begin{array}{cccc}{2}^{5x} & = & {2}^{\frac{1}{2}\,\,\,\,\,}\hfill & \text{Write the square root of 2 as a power of }2.\hfill \\ \,\,5x &= &\frac{1}{2}\hfill & \text{Use the one-to-one property}.\hfill \\ \,\,\,\,\,x&= &\frac{1}{10}\hfill & \text{Solve for }x.\hfill \end{array}[/latex]

 


image  Try It #9

Solve[latex]\,{5}^{x}=\sqrt{5}.[/latex]


image  Q&A

Do all exponential equations have a solution? If not, how can we tell if there is a solution during the problem-solving process?

No. Recall that the range of an exponential function is always positive. While solving the equation, we may obtain an expression that is undefined.


EXAMPLE 18

Solving an Equation with Positive and Negative Powers

Solve[latex]\,{3}^{x+1}=-2.[/latex]

 

Show/Hide Solution

This equation has no solution. There is no real value of[latex]\,x\,[/latex]that will make the equation a true statement because any power of a positive number is positive.

 

image Analysis

Figure 1 shows that the two graphs do not cross so the left side is never equal to the right side. Thus the equation has no solution.

Graph of 3^(x+1)=-2 and y=-2. The graph notes that they do not cross.

Figure 1

 


image  Try It #10

Solve[latex]\,{2}^{x}=-100.[/latex]


Solving Exponential Equations Using Logarithms

Sometimes the terms of an exponential equation cannot be rewritten with a common base. In these cases, we solve by taking the logarithm of each side. Recall, since[latex]\,\mathrm{log}\left(a\right)=\mathrm{log}\left(b\right)\,[/latex]is equivalent to[latex]\,a=b,[/latex] we may apply logarithms with the same base on both sides of an exponential equation.

 

How To

Given an exponential equation in which a common base cannot be found, solve for the unknown.

  1. Apply the logarithm of both sides of the equation.
    • If one of the terms in the equation has base 10, use the common logarithm.
    • If none of the terms in the equation has base 10, use the natural logarithm.
  2. Use the rules of logarithms to solve for the unknown.

 

EXAMPLE 19

Solving an Equation Containing Powers of Different Bases

Solve[latex]\,{5}^{x+2}={4}^{x}.[/latex]

 

Show/Hide Solution

[latex]\begin{array}{cccc}\text{ }\,\,{5}^{x+2} &= & {4}^{x}\hfill & \text{There is no easy way to get the powers to have the same base}.\hfill \\ \text{ }\,\mathrm{ln}{5}^{x+2} & =& \mathrm{ln}{4}^{x}\hfill & \text{Take ln of both sides}.\hfill \\ \text{ }\,\left(x+2\right)\mathrm{ln}5 & = & x\mathrm{ln}4\hfill & \text{Use laws of logs}.\hfill \\ \text{ }x\mathrm{ln}5+2\mathrm{ln}5 & = & x\mathrm{ln}4\hfill & \text{Use the distributive law}.\hfill \\ \text{ }x\mathrm{ln}5-x\mathrm{ln}4 & = & -2\mathrm{ln}5\hfill & \text{Get terms containing }x\text{ on one side, terms without }x\text{ on the other}.\hfill \\ \,\,x\left(\mathrm{ln}5-\mathrm{ln}4\right) & = & -2\mathrm{ln}5\hfill & \text{On the left hand side, factor out an }x.\hfill \\ \text{ }\,x\mathrm{ln}\left(\frac{5}{4}\right) & = & \mathrm{ln}\left(\frac{1}{25}\right)\begin{array}{cccc}& & & \end{array}\hfill & \text{Use the laws of logs}.\hfill \\ \text{ }\,x & = & \frac{\mathrm{ln}\left(\frac{1}{25}\right)}{\mathrm{ln}\left(\frac{5}{4}\right)}\hfill & \text{Divide by the coefficient of }x.\hfill \end{array}[/latex]

 


image  Try It #11

Solve[latex]\,{2}^{x}={3}^{x+1}.[/latex]


image  Q&A

Is there any way to solve[latex]\,{2}^{x}={3}^{x}?[/latex]

Yes. The solution is [latex]0.[/latex]


Equations Containing e

One common type of exponential equations are those with base[latex]\,e.\,[/latex]This constant occurs again and again in nature, in mathematics, in science, in engineering, and in finance. When we have an equation with a base[latex]\,e\,[/latex]on either side, we can use the natural logarithm to solve it.

How To

Given an equation of the form[latex]\,y=A{e}^{kt}\text{,}[/latex] solve for[latex]\,t.[/latex]

  1. Divide both sides of the equation by[latex]\,A.[/latex]
  2. Apply the natural logarithm of both sides of the equation.
  3. Divide both sides of the equation by[latex]\,k.[/latex]

 

EXAMPLE 20

Solve an Equation of the Form y = Aekt

Solve[latex]\,100=20{e}^{2t}.[/latex]

 

Show/Hide Solution

[latex]\begin{array}{cccc}100\hfill & = & 20{e}^{2t}\hfill & \hfill \\ \,\,\,5\hfill & = & {e}^{2t}\hfill & \text{Divide by the coefficient of the power}\text{.}\hfill \\ \mathrm{ln}5\hfill & = & 2t\hfill & \text{Take ln of both sides}\text{. Use the fact that }\mathrm{ln}\left(x\right)\text{ and }{e}^{x}\text{ are inverse functions}\text{.}\hfill \\ \,\,\,t\hfill & = & \frac{\mathrm{ln}5}{2}\,\,\,\,\,\hfill & \text{Divide by the coefficient of }t\text{.}\hfill \end{array}[/latex]

 

image Analysis

Using laws of logs, we can also write this answer in the form[latex]\,t=\mathrm{ln}\sqrt{5}.[/latex]If we want a decimal approximation of the answer, we use a calculator.

 

 


image  Try It #12

Solve[latex]\,3{e}^{0.5t}=11.[/latex]


image  Q&A

Does every equation of the form[latex]\,y=A{e}^{kt}\,[/latex]have a solution?

No. There is a solution when[latex]\,k\ne 0,[/latex]and when[latex]\,y\,[/latex]and[latex]\,A\,[/latex]are either both 0 or neither 0, and they have the same sign. An example of an equation with this form that has no solution is[latex]\,2=-3{e}^{t}.[/latex]


EXAMPLE 21

Solving an Equation That Can Be Simplified to the Form y = Aekt

Solve[latex]\,4{e}^{2x}+5=12.[/latex]

 

Show/Hide Solution

[latex]\begin{array}{ll}4{e}^{2x}+5=12\hfill & \hfill \\ \,\,\,\,\,\,\,\,\,\,4{e}^{2x}=7\hfill & \text{Combine like terms}.\hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,{e}^{2x}=\frac{7}{4}\hfill & \text{Divide by the coefficient of the power}.\hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2x=\mathrm{ln}\left(\frac{7}{4}\right)\hfill & \text{Take ln of both sides}.\hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x=\frac{1}{2}\mathrm{ln}\left(\frac{7}{4}\right)\hfill & \text{Solve for }x.\hfill \end{array}[/latex]

 


image  Try It #13

Solve[latex]\,3+{e}^{2t}=7{e}^{2t}.[/latex]


Extraneous Solutions

Sometimes the methods used to solve an equation introduce an extraneous solution, which is a solution that is correct algebraically but does not satisfy the conditions of the original equation. One such situation arises in solving when the logarithm is taken on both sides of the equation. In such cases, remember that the argument of the logarithm must be positive. If the number we are evaluating in a logarithm function is negative, there is no output.

 

EXAMPLE 22

Solving Exponential Functions in Quadratic Form

Solve[latex]\,{e}^{2x}-{e}^{x}=56.[/latex]

 

Show/Hide Solution

[latex]\begin{array}{cccc}\,\,\,\,\,\,\,\,\,\,\,\,\,{e}^{2x}-{e}^{x}\hfill & = & 56\hfill & \hfill \\ \,\,\,\,{e}^{2x}-{e}^{x}-56\hfill & = & 0\hfill & \text{Get one side of the equation equal to zero}.\hfill \\ \left({e}^{x}+7\right)\left({e}^{x}-8\right)\hfill & = & 0\hfill & \text{Factor by the FOIL method}.\hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{e}^{x}+7\hfill & =  & 0\text{ or }{e}^{x}-8=0\begin{array}{cccc}& & & \end{array}\hfill & \text{If a product is zero, then one factor must be zero}.\hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{e}^{x}\hfill & = & -7{\text{ or e}}^{x}=8\hfill & \text{Isolate the exponentials}.\hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{e}^{x}\hfill & = & 8\hfill & \text{Reject the equation in which the power equals a negative number}.\hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\hfill & = & \mathrm{ln}8\hfill & \text{Solve the equation in which the power equals a positive number}.\hfill \end{array}[/latex]

 

image Analysis

When we plan to use factoring to solve a problem, we always get zero on one side of the equation, because zero has the unique property that when a product is zero, one or both of the factors must be zero. We reject the equation[latex]\,{e}^{x}=-7\,[/latex]because a positive number never equals a negative number. The solution [latex]\,\mathrm{ln}\left(-7\right)\,[/latex]is not a real number, and in the real number system this solution is rejected as an extraneous solution.

 


image  Try It #14

Solve[latex]\,{e}^{2x}={e}^{x}+2.[/latex]


image  Q&A

Does every logarithmic equation have a solution?

No. Keep in mind that we can only apply the logarithm to a positive number. Always check for extraneous solutions.


Solving Logarithmic Equations

Let’s Start by Using the Definition of a Logarithm to Solve Logarithmic Equations

We have already seen that every logarithmic equation[latex]\,{\mathrm{log}}_{b}\left(x\right)=y\,[/latex]is equivalent to the exponential equation[latex]\,{b}^{y}=x.\,[/latex]We can use this fact, along with the rules of logarithms, to solve logarithmic equations where the argument is an algebraic expression.

For example, consider the equation[latex]\,{\mathrm{log}}_{2}\left(2\right)+{\mathrm{log}}_{2}\left(3x-5\right)=3.\,[/latex]To solve this equation, we can use rules of logarithms to rewrite the left side in compact form and then apply the definition of logs to solve for[latex]\,x:[/latex]

[latex]\begin{array}{cccc}{\mathrm{log}}_{2}\left(2\right)+{\mathrm{log}}_{2}\left(3x-5\right) & = & 3\hfill & \hfill \\ \text{ }\,{\mathrm{log}}_{2}\left(2\left(3x-5\right)\right) & = & 3\hfill & \text{Apply the product rule of logarithms}.\hfill \\ \text{ }{\mathrm{log}}_{2}\left(6x-10\right) & = & 3\hfill & \text{Distribute}.\hfill \\ \text{ }\,\,{2}^{3} & = & 6x-10\hfill & \text{Apply the definition of a logarithm}.\hfill \\ \text{ }8 & = & 6x-10\begin{array}{cccc}& & & \end{array}\hfill & \text{Calculate }{2}^{3}.\hfill \\ \text{ }18 & = & 6x\hfill & \text{Add 10 to both sides}.\hfill \\ \text{ }\,x & = & 3\hfill & \text{Divide by 6}.\hfill \end{array}[/latex]

 

Using the Definition of a Logarithm to Solve Logarithmic Equations

For any algebraic expression[latex]\,S\,[/latex]and real numbers[latex]\,b\,[/latex]and[latex]\,c,[/latex]where[latex]\,b>0,\text{ }b\ne 1,[/latex]

[latex]{\mathrm{log}}_{b}\left(S\right)=c\,\,\text{if and only if}\,\,{b}^{c}=S[/latex]

 

EXAMPLE 23

Using Algebra to Solve a Logarithmic Equation

Solve[latex]\,2\mathrm{ln}x+3=7.[/latex]

 

Show/Hide Solution

[latex]\begin{array}{cccc}2\mathrm{ln}x+3 & = & 7\hfill & \hfill \\ \text{ }\,\,2\mathrm{ln}x & = & 4\hfill & \text{Subtract 3}.\hfill \\ \text{ }\,\,\mathrm{ln}x & = & 2\hfill & \text{Divide by 2}.\hfill \\ \text{ }\,x & = & {e}^{2}\hfill & \text{Rewrite in exponential form}.\hfill \end{array}[/latex]

 


image  Try It #15

Solve[latex]\,6+\mathrm{ln}x=10.[/latex]


EXAMPLE 24

Using Algebra Before and After Using the Definition of the Natural Logarithm

Solve[latex]\,2\mathrm{ln}\left(6x\right)=7.[/latex]

 

Show/Hide Solution

[latex]\begin{array}{cccc}2\mathrm{ln}\left(6x\right) & = & 7\hfill & \hfill \\ \text{ }\mathrm{ln}\left(6x\right) & = & \frac{7}{2}\hfill & \text{Divide by 2}.\hfill \\ \text{ }6x & = & {e}^{\left(\frac{7}{2}\right)}\hfill & \text{Use the definition of }\mathrm{ln}.\hfill \\ \text{ }x & = & \frac{1}{6}{e}^{\left(\frac{7}{2}\right)}\hfill & \text{Divide by 6}.\hfill \end{array}[/latex]

 


image  Try It #16

Solve[latex]\,2\mathrm{ln}\left(x+1\right)=10.[/latex]


EXAMPLE 25

Using a Graph to Understand the Solution to a Logarithmic Equation

Solve[latex]\,\mathrm{ln}x=3.[/latex]

 

Show/Hide Solution
[latex]\begin{array}{ll}\mathrm{ln}x=3\hfill & \hfill \\ \,\,\,\,\,x={e}^{3}\hfill & \text{Use the definition of the natural logarithm}\text{.}\hfill \end{array}[/latex]

Figure 2 represents the graph of the equation. On the graph, the x-coordinate of the point at which the two graphs intersect is close to 20. In other words[latex]\,{e}^{3}\approx 20.\,[/latex]A calculator gives a better approximation:[latex]\,{e}^{3}\approx 20.0855.[/latex]

Graph of two questions, y=3 and y=ln(x), which intersect at the point (e^3, 3) which is approximately (20.0855, 3).

Figure 2

 


image  Try It #17

Use a graphing calculator to estimate the approximate solution to the logarithmic equation[latex]\,{2}^{x}=1000\,[/latex]to 2 decimal places.


Using the One-to-One Property of Logarithms to Solve Logarithmic Equations

As with exponential equations, we can use the one-to-one property to solve logarithmic equations. The one-to-one property of logarithmic functions tells us that, for any real numbers[latex]\,x>0,[/latex] [latex]S>0,[/latex] [latex]T>0\,[/latex]and any positive real number[latex]\,b,[/latex] where[latex]\,b\ne 1,[/latex]

[latex]{\mathrm{log}}_{b}S={\mathrm{log}}_{b}T\text{ if and only if }S=T.[/latex]

For example,

[latex]\text{If }{\mathrm{log}}_{2}\left(x-1\right)={\mathrm{log}}_{2}\left(8\right),\text{then }x-1=8.[/latex]

So, if[latex]\,x-1=8,[/latex]then we can solve for[latex]\,x,[/latex]and we get[latex]\,x=9.\,[/latex]To check, we can substitute[latex]\,x=9\,[/latex]into the original equation:[latex]\,{\mathrm{log}}_{2}\left(9-1\right)={\mathrm{log}}_{2}\left(8\right)=3.\,[/latex]In other words, when a logarithmic equation has the same base on each side, the arguments must be equal. This also applies when the arguments are algebraic expressions. Therefore, when given an equation with logs of the same base on each side, we can use rules of logarithms to rewrite each side as a single logarithm. Then we use the fact that logarithmic functions are one-to-one to set the arguments equal to one another and solve for the unknown.

For example, consider the equation[latex]\,\mathrm{log}\left(3x-2\right)-\mathrm{log}\left(2\right)=\mathrm{log}\left(x+4\right).\,[/latex]To solve this equation, we can use the rules of logarithms to rewrite the left side as a single logarithm, and then apply the one-to-one property to solve for[latex]\,x:[/latex]

[latex]\begin{array}{cccc}\mathrm{log}\left(3x-2\right)-\mathrm{log}\left(2\right) & = & \mathrm{log}\left(x+4\right)\hfill & \hfill \\ \text{ }\,\,\,\mathrm{log}\left(\frac{3x-2}{2}\right) & = & \mathrm{log}\left(x+4\right)\hfill & \text{Apply the quotient rule of logarithms}.\hfill \\ \text{ }\,\,\frac{3x-2}{2} & = & x+4\hfill & \text{Apply the one to one property of a logarithm}.\hfill \\ \text{ }\,\,\,3x-2 & = & 2x+8\hfill & \text{Multiply both sides of the equation by }2.\hfill \\ \text{ }\,\,x & = & 10\hfill & \text{Subtract 2}x\text{ and add 2}.\hfill \end{array}[/latex]

To check the result, substitute[latex]\,x=10\,[/latex]into[latex]\,\mathrm{log}\left(3x-2\right)-\mathrm{log}\left(2\right)=\mathrm{log}\left(x+4\right).[/latex]

[latex]\begin{array}{cccc}\mathrm{log}\left(3\left(10\right)-2\right)-\mathrm{log}\left(2\right) & = & \mathrm{log}\left(\left(10\right)+4\right)\hfill & \hfill \\ \text{ }\,\mathrm{log}\left(28\right)-\mathrm{log}\left(2\right) & = & \mathrm{log}\left(14\right)\hfill & \hfill \\ \text{ }\,\,\mathrm{log}\left(\frac{28}{2}\right) & = & \mathrm{log}\left(14\right)\hfill & \text{The solution checks}.\hfill \end{array}[/latex]

 

Using the One-to-One Property of Logarithms to Solve Logarithmic Equations

For any algebraic expressions[latex]\,S\,[/latex]and[latex]\,T\,[/latex]and any positive real number[latex]\,b,[/latex] where[latex]\,b\ne 1,[/latex]

[latex]{\mathrm{log}}_{b}S={\mathrm{log}}_{b}T\,\,\text{if and only if}\,\,S=T[/latex]

Note, when solving an equation involving logarithms, always check to see if the answer is correct or if it is an extraneous solution.

 

How To

Given an equation containing logarithms, solve it using the one-to-one property.

  1. Use the rules of logarithms to combine like terms, if necessary, so that the resulting equation has the form[latex]\,{\mathrm{log}}_{b}S={\mathrm{log}}_{b}T.[/latex]
  2. Use the one-to-one property to set the arguments equal.
  3. Solve the resulting equation,[latex]\,S=T,[/latex] for the unknown.

 

EXAMPLE 26

Solving an Equation Using the One-to-One Property of Logarithms

Solve[latex]\,\mathrm{ln}\left({x}^{2}\right)=\mathrm{ln}\left(2x+3\right).[/latex]

 

Show/Hide Solution

[latex]\begin{array}{cccccccc} & & \text{ }\,\,\,\,\,\,\,\,\mathrm{ln}\left({x}^{2}\right) & = & \mathrm{ln}\left(2x+3\right)\hfill & & & \hfill \\ & & \text{ }\,\,\,\,\,\,{x}^{2} & = & 2x+3\hfill & & & \text{Use the one-to-one property of the logarithm}.\hfill \\ & & \text{ }\,\,\,{x}^{2}-2x-3 & = & 0\hfill & & & \text{Get zero on one side before factoring}.\hfill \\ & & \,\,\,\left(x-3\right)\left(x+1\right) & = & 0\hfill & & & \text{Factor using FOIL}.\hfill \\ \hfill x-3 & = & 0 \hfill & \hfill \text{or}\hfill & \hfill x+1 & = & 0 \hfill & \text{If a product is zero, one of the factors must be zero}. \hfill \\ \hfill x & = & 3 \hfill & \hfill \text{or} \hfill & \hfill x & = & -1 \hfill & \text{Solve for }x. \hfill \end{array}[/latex]

 

image Analysis

There are two solutions: [latex]\,3\,[/latex] or [latex]\,-1.\,[/latex]The solution [latex]\,-1\,[/latex]is negative, but it checks when substituted into the original equation because the argument of the logarithm functions is still positive.

 


image  Try It #18

Solve[latex]\,\mathrm{ln}\left({x}^{2}\right)=\mathrm{ln}\left(1\right).[/latex]


Section 3.1 Exercises

[Answers to odd problem numbers are provided at the end of the problem set.  Just scroll down!]

Factor each of the following quadratics completely.

1.  [latex]7{x}^{2}-19x-6[/latex]

 

2.  [latex]3{n}^{2}-2n-8[/latex]

 

3.  [latex]7{b}^{2}+15b+2[/latex]

 

4.  [latex]21{v}^{2}-11v-2[/latex]

 

5.  [latex]5{a}^2+13a-6[/latex]

 

6.  [latex]5{n}^{2}-18n-8[/latex]

 

7.  [latex]2{x}^{2}-5x+2[/latex]

 

8.  [latex]3{r}^{2}-4r-4[/latex]

 

9.  [latex]2{x}^{2}+19x+35[/latex]

 

10.  [latex]3{x}^{2}+4x-15[/latex]

 

11.  [latex]2{b}^{2}-b-3[/latex]

 

12.  [latex]2{k}^{2}+5k-12[/latex]

 

13.  [latex]4{k}^{2}-17k+4[/latex]

 

14.  [latex]4{r}^2+3r-7[/latex]

 

15.  [latex]5{n}^{2}+21n+4[/latex]

 

16.  [latex]8{w}^{2}+25w+3[/latex]

 

17.  [latex]9{z}^{2}+15z+4[/latex]

 

18.  [latex]3{m}^{2}+26m+48[/latex]

 

19.  [latex]4{k}^{2}−16k+15[/latex]

 

20.  [latex]4{q}^{2}−9q+5[/latex]

 

21.  [latex]5{s}^{2}−9s+4[/latex]

 

22.  [latex]4{r}^{2}−20r+25[/latex]

 

23.  [latex]6{y}^{2}+y−15[/latex]

 

24.  [latex]6{p}^{2}+p−22[/latex]

 

25.  [latex]2{n}^{2}−27n−45[/latex]

 

26.  [latex]12{z}^{2}−41z−11[/latex]

 

27.  [latex]3{x}^{2}+8x+4[/latex]

 

28.  [latex]4{y}^{2}+15y+6[/latex]

 

29.  [latex]60{y}^{2}+290y−50[/latex]

 

30.  [latex]6{u}^{2}−46u−16[/latex]

 

31.  [latex]48{z}^{3}−102{z}^{2}−45z[/latex]

 

32.  [latex]90{n}^{3}+42{n}^{2}−216n[/latex]

 

33.  [latex]16{s}^{2}+40s+24[/latex]

 

34.  [latex]24{p}^{2}+160p+96[/latex]

 

35.  [latex]48{y}^{2}+12y−36[/latex]

 

36.  [latex]30{x}^{2}+105x−60[/latex]

 

In the following exercises, solve by using the Quadratic Formula.

37.  [latex]2{a}^{2}−6a+3=0[/latex]

 

38.  [latex]5{b}^{2}+2b−4=0[/latex]

 

39.  [latex]2{x}^{2}+3x+9=0[/latex]

 

40.  [latex]6{y}^{2}−5y+2=0[/latex]

 

41.  [latex]2{a}^{2}+12a+5=0[/latex]

 

42.  [latex]4{d}^{2}−7d+2=0[/latex]

 

Solve each of the following.

43. [latex]1+\frac{9}{p}=−\frac{20}{{p}^{2}}[/latex]

 

44.  [latex]\frac{5}{y−9}+\frac{1}{y+9}=\frac{18}{{y}^{2}−81}[/latex]

 

45.  [latex]\frac{8}{z−10}+\frac{7}{z+10}=\frac{5}{{z}^{2}−100}[/latex]

 

46.  [latex]\frac{w+8}{{w}^{2}−11w+28}=\frac{5}{w−7}+\frac{2}{w−4}[/latex]

 

47.  [latex]\frac{x−10}{{x}^{2}+8x+12}=\frac{3}{x+2}+\frac{4}{x+6}[/latex]

 

48.  [latex]\frac{m}{m+5}=\frac{50}{{m}^{2}−25}+6[/latex]

 

49.  [latex]\frac{d}{d+3}=\frac{18}{{d}^{2}−9}+4[/latex]

 

50.  [latex]\frac{r}{3r−15}−\frac{1}{4r+20}=\frac{3{r}^{2}+17r+40}{12{r}^{2}−300}[/latex]

 

51.  [latex]\frac{s}{2s+6}−\frac{2}{5s+5}=\frac{5{s}^{2}−s−18}{10{s}^{2}+40s+30}[/latex]

 

52.  [latex]\frac{t}{6t−12}−\frac{5}{2t+10}=\frac{{t}^{2}−23t+70}{12{t}^{2}+36t−120}[/latex]

 

Verbal

53.  How can an exponential equation be solved?

 

54.  When does an extraneous solution occur? How can an extraneous solution be recognized?

 

55.  When can the one-to-one property of logarithms be used to solve an equation? When can it not be used?

 

Algebraic

For the following exercises, use like bases to solve the exponential equation.

56.  [latex]{4}^{-3v-2}={4}^{-v}[/latex]

 

57.  [latex]64\cdot {4}^{3x}=16[/latex]

 

58. [latex]{3}^{2x+1}\cdot {3}^{x}=243[/latex]

 

59.  [latex]{2}^{-3n}\cdot \frac{1}{4}={2}^{n+2}[/latex]

 

60. [latex]625\cdot {5}^{3x+3}=125[/latex]

 

61.  [latex]\frac{{36}^{3b}}{{36}^{2b}}={216}^{2-b}[/latex]

 

62. [latex]{\left(\frac{1}{64}\right)}^{3n}\cdot 8={2}^{6}[/latex]

 

For the following exercises, use logarithms to solve.

63.  [latex]{9}^{x-10}=1[/latex]

 

64. [latex]2{e}^{6x}=13[/latex]

 

65.  [latex]{e}^{r+10}-10=-42[/latex]

 

66. [latex]2\cdot {10}^{9a}=29[/latex]

 

67.  [latex]-8\cdot {10}^{p+7}-7=-24[/latex]

 

68. [latex]7{e}^{3n-5}+5=-89[/latex]

 

69.  [latex]{e}^{-3k}+6=44[/latex]

 

70. [latex]-5{e}^{9x-8}-8=-62[/latex]

 

71.  [latex]-6{e}^{9x+8}+2=-74[/latex]

 

72. [latex]{2}^{x+1}={5}^{2x-1}[/latex]

 

73.  [latex]{e}^{2x}-{e}^{x}-132=0[/latex]

 

74. [latex]7{e}^{8x+8}-5=-95[/latex]

 

75.  [latex]10{e}^{8x+3}+2=8[/latex]

 

76. [latex]4{e}^{3x+3}-7=53[/latex]

 

77.  [latex]8{e}^{-5x-2}-4=-90[/latex]

 

78. [latex]{3}^{2x+1}={7}^{x-2}[/latex]

 

79.  [latex]{e}^{2x}-{e}^{x}-6=0[/latex]

 

80. [latex]3{e}^{3-3x}+6=-31[/latex]

 

For the following exercises, use the definition of a logarithm to rewrite the equation as an exponential equation

81.  [latex]\mathrm{log}\left(\frac{1}{100}\right)=-2[/latex]

 

82. [latex]{\mathrm{log}}_{324}\left(18\right)=\frac{1}{2}[/latex]

 

For the following exercises, use the definition of a logarithm to solve the equation.

83.  [latex]5{\mathrm{log}}_{7}n=10[/latex]

 

84. [latex]-8{\mathrm{log}}_{9}x=16[/latex]

 

85.  [latex]4+{\mathrm{log}}_{2}\left(9k\right)=2[/latex]

 

86. [latex]2\mathrm{log}\left(8n+4\right)+6=10[/latex]

 

87.  [latex]10-4\mathrm{ln}\left(9-8x\right)=6[/latex]

 

For the following exercises, use the one-to-one property of logarithms to solve.

88.  [latex]\mathrm{ln}\left(10-3x\right)=\mathrm{ln}\left(-4x\right)[/latex]

 

89.  [latex]{\mathrm{log}}_{13}\left(5n-2\right)={\mathrm{log}}_{13}\left(8-5n\right)[/latex]

 

90. [latex]\mathrm{log}\left(x+3\right)-\mathrm{log}\left(x\right)=\mathrm{log}\left(74\right)[/latex]

 

91.  [latex]\mathrm{ln}\left(-3x\right)=\mathrm{ln}\left({x}^{2}-6x\right)[/latex]

 

92. [latex]{\mathrm{log}}_{4}\left(6-m\right)={\mathrm{log}}_{4}3m[/latex]

 

93.  [latex]\mathrm{ln}\left(x-2\right)-\mathrm{ln}\left(x\right)=\mathrm{ln}\left(54\right)[/latex]

 

94. [latex]{\mathrm{log}}_{9}\left(2{n}^{2}-14n\right)={\mathrm{log}}_{9}\left(-45+{n}^{2}\right)[/latex]

 

95.  [latex]\mathrm{ln}\left({x}^{2}-10\right)+\mathrm{ln}\left(9\right)=\mathrm{ln}\left(10\right)[/latex]

 

For the following exercises, solve each equation for[latex]\,x.[/latex]

96.  [latex]\mathrm{log}\left(x+12\right)=\mathrm{log}\left(x\right)+\mathrm{log}\left(12\right)[/latex]

 

97.  [latex]\mathrm{ln}\left(x\right)+\mathrm{ln}\left(x-3\right)=\mathrm{ln}\left(7x\right)[/latex]

 

98. [latex]{\mathrm{log}}_{2}\left(7x+6\right)=3[/latex]

 

99.  [latex]\mathrm{ln}\left(7\right)+\mathrm{ln}\left(2-4{x}^{2}\right)=\mathrm{ln}\left(14\right)[/latex]

 

100. [latex]{\mathrm{log}}_{8}\left(x+6\right)-{\mathrm{log}}_{8}\left(x\right)={\mathrm{log}}_{8}\left(58\right)[/latex]

 

101.[latex]\mathrm{ln}\left(3\right)-\mathrm{ln}\left(3-3x\right)=\mathrm{ln}\left(4\right)[/latex]

 

102.  [latex]{\mathrm{log}}_{3}\left(3x\right)-{\mathrm{log}}_{3}\left(6\right)={\mathrm{log}}_{3}\left(77\right)[/latex]

 


Answers to Section 3.1 Odd Problems

1.  [latex]\left(x-3\right)\left(7x+2\right)[/latex]

 

3.  [latex]\left(b+2\right)\left(7b+1\right)[/latex]

 

5.  [latex]\left(a+3\right)\left(5a-2\right)[/latex]

 

7.  [latex]\left(2x-1\right)\left(x-2\right)[/latex]

 

9.  [latex]\left(x+7\right)\left(2x+5\right)[/latex]

 

11.  [latex]\left(2b-3\right)\left(b+1\right)[/latex]

 

13. [latex]\left(k-4\right)\left(4k-1\right)[/latex]

 

15. [latex]\left(5n+1\right)\left(n+4\right)[/latex]

 

17. [latex]\left(3z+1\right)\left(3z+4\right)[/latex]

 

19. [latex]\left(2k−3\right)\left(2k−5\right)[/latex]

 

21. [latex]\left(5s−4\right)\left(s−1\right)[/latex]

 

23. [latex]\left(3y+5\right)\left(2y−3\right)[/latex]

 

25. [latex]\left(2n+3\right)\left(n−15\right)[/latex]

 

27.  [latex]\left(3x+2\right)\left(x+2\right)[/latex]

 

29. [latex]10\left(6y−1\right)\left(y+5\right)[/latex]

 

31. [latex]3z\left(8z+3\right)\left(2z−5\right)[/latex]

 

33. [latex]8\left(2s+3\right)\left(s+1\right)[/latex]

 

35. [latex]12\left(4y−3\right)\left(y+1\right)[/latex]

 

37.  [latex]a=\frac{3 \pm \sqrt{3}}{2}[/latex]

 

39.  no real solution

 

41.  [latex]a=\frac{-6 \pm \sqrt{26}}{2}[/latex]

 

43.  [latex]-5, \; -4[/latex]

 

45.  [latex]-\frac{1}{3}[/latex]

 

47.  no solution

 

49.  [latex]2[/latex]

 

51.  no solution

 

53. Determine first if the equation can be rewritten so that each side uses the same base. If so, the exponents can be set equal to each other. If the equation cannot be rewritten so that each side uses the same base, then apply the logarithm to each side and use properties of logarithms to solve.

 

55.  The one-to-one property can be used if both sides of the equation can be rewritten as a single logarithm with the same base. If so, the arguments can be set equal to each other, and the resulting equation can be solved algebraically. The one-to-one property cannot be used when each side of the equation cannot be rewritten as a single logarithm with the same base.

 

57.  [latex]x=-\frac{1}{3}[/latex]

 

59.  [latex]n=-1[/latex]

 

61.  [latex]b=\frac{6}{5}[/latex]

 

63.  [latex]x=10[/latex]

 

65.  no solution

 

67.  [latex]p=\mathrm{log}\left(\frac{17}{8}\right)-7[/latex]

 

69.  [latex]k=-\frac{\mathrm{ln}\left(38\right)}{3}[/latex]

 

71.  [latex]x=\frac{\mathrm{ln}\left(\frac{38}{3}\right)-8}{9}[/latex]

 

73.  [latex]x=\mathrm{ln}12\text{ }[/latex]

 

75.  [latex]x=\frac{\mathrm{ln}\left(\frac{3}{5}\right)-3}{8}[/latex]

 

77.  no solution

 

79.  [latex]x=\mathrm{ln}\left(3\right)[/latex]

 

81.  [latex]{10}^{-2}=\frac{1}{100}[/latex]

 

83.  [latex]n=49[/latex]

 

85.  [latex]k=\frac{1}{36}[/latex]

 

87.  [latex]x=\frac{9-e}{8}[/latex]

 

89.  [latex]n=1[/latex]

 

91.  no solution

 

93.  no solution

 

95.  [latex]x=±\frac{10}{3}[/latex]

 

97.  [latex]x=10[/latex]

 

99.  [latex]x=0[/latex]

 

101.  [latex]x=\frac{3}{4}[/latex]

 

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Baylor University's Co-requisite Supplement for Calculus I Copyright © 2023 by Amy Graham Goodman is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book