Section 4.2: Algebraic Transformations of Expressions

Learning Objectives

In this section, you will:

  • Determine a strategy for transforming an algebraic expression into sums/differences of power functions.
  • Execute a strategy for transforming an algebraic expression into sums/differences of power functions.

    Let’s Get Started…

    Check out Khan Academy’s Reverse Power Rule: Rewriting Before Integrating

    • Reload for a fresh batch of problems

    • Answers are automatically checked!

    https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-8a/e/reverse-power-rule-rewriting


    Section 4.2 Exercises

    This content comes directly from OpenStax’s textbook Elementary Algebra Section 6.3 Multiply Polynomials and Section 6.6 Divide Polynomials.

    Access these resources for free at https://openstax.org/books/elementary-algebra-2e/pages/6-3-multiply-polynomials and https://openstax.org/books/elementary-algebra-2e/pages/6-6-divide-polynomials

    [Answers to odd problem numbers are provided at the end of the problem set.  Just scroll down!]

    Rewrite each expression below as sums/differences of power functions and (potentially) constants.

    1.  [latex]\left(x+5\right)\left({x}^{2}+4x+3\right)[/latex]

     

    2.  [latex]\left(u+4\right)\left({u}^{2}+3u+2\right)[/latex]

     

    3.  [latex]\left(y+8\right)\left(4{y}^{2}+y-7\right)[/latex]

     

    4.  [latex]\left(a+10\right)\left(3{a}^{2}+a-5\right)[/latex]

     

    5.  [latex]\left(w-7\right)\left({w}^{2}-9w+10\right)[/latex]

     

    6.  [latex]\left(p-4\right)\left({p}^{2}-6p+9\right)[/latex]

     

    7.  [latex]\left(3q+1\right)\left({q}^{2}-4q-5\right)[/latex]

     

    8.  [latex]\left(6r+1\right)\left({r}^{2}-7r-9\right)[/latex]

     

    9.[latex]\frac{51{m}^{4}+72{m}^{3}}{-3}[/latex]

     

    10. [latex]\frac{310{y}^{4}-200{y}^{3}}{5{y}^{2}}[/latex]

     

    11. [latex]\frac{412{z}^{8}-48{z}^{5}}{4{z}^{3}}[/latex]

     

    12.  [latex]\frac{46{x}^{3}+38{x}^{2}}{2{x}^{2}}[/latex]

     

    13.  [latex]\frac{51{y}^{4}+42{y}^{2}}{3{y}^{2}}[/latex]

     

    14.  [latex]\frac{24{p}^{2}-33p}{-3p}[/latex]

     

    15.  [latex]\frac{35{x}^{4}-21x}{-7x}[/latex]

     

    16.  [latex]\frac{63{m}^{4}-42{m}^{3}}{-7{m}^{2}}[/latex]

     

    17.  [latex]\frac{48{y}^{4}-24{y}^{3}}{-8{y}^{2}}[/latex]

     

    18.  [latex]\frac{63{a}^{2}{b}^{3}+72a{b}^{4}}{9ab}[/latex]

     

    19. [latex]\frac{45{x}^{3}{y}^{4}+60x{y}^{2}}{5xy}[/latex]

     


    Answers to Section 4.2 Odd Problems

    1.  [latex]{x}^{3}+9{x}^{2}+23x+15[/latex]

     

    3.  [latex]4{y}^{3}+33{y}^{2}+y−56[/latex]

     

    5.  [latex]{w}^{3}−16{w}^{2}+73w−70[/latex]

     

    7.  [latex]3{q}^{3}−11{q}^{2}−19q−5[/latex]

     

    9.  [latex]-17{m}^{4}−24{m}^{3}[/latex]

     

    11.  [latex]103{z}^{5}−12{z}^{2}[/latex]

     

    13.  [latex]17{y}^{2}+14[/latex]

     

    15.  [latex]-5{x}^{3}+3[/latex]

     

    17.  [latex]-6{y}^{2}+3y[/latex]

     

    19.  [latex]9{x}^{2}{y}^{3}+12y[/latex]

    License

    Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

    Baylor University's Co-requisite Supplement for Calculus I Copyright © 2023 by Amy Graham Goodman is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

    Share This Book