Section 4.5: Equality of Algebraic Expressions
Learning Objectives
In this section, you will:
- Evaluate the equality of algebraic expressions.
- Articulate non-algebraic tests for equality.
Let’s Get Started…
Check out Khan Academy’s Equivalent Expressions
-
Practice problems follow the discussion.
-
Answers are automatically checked!
https://www.khanacademy.org/test-prep/praxis-math/praxis-math-lessons/praxis-math-algebra/a/gtp–praxis-math–article–equivalent-expressions–lesson
Section 4.5 Exercises
True or False. Determine whether each pair of expressions is equivalent.
1. [latex]\begin{array}[b]{ccc} & \text{?} & \\ \sqrt{{x}^{2}+4} &\leftrightarrow & x+2 \end{array}[/latex]
2. [latex]\begin{array}[b]{ccc} & \text{?} & \\ {\left(3{e}^{x}\right)}^{2} &\leftrightarrow & 9{e}^{{x}^{2}} \end{array}[/latex]
3. [latex]\begin{array}[b]{ccc} & \text{?} & \\ \frac{{x}^{2}+5}{{x}^{2}} &\leftrightarrow & 5 \end{array}[/latex]
4. [latex]\begin{array}[b]{ccc} & \text{?} & \\ \frac{{x}^{2}+5}{{x}^{2}} &\leftrightarrow & 1+\frac{5}{{x}^{2}} \end{array}[/latex]
5. [latex]\begin{array}[b]{ccc} & \text{?} & \\ \sqrt{4x+8} &\leftrightarrow & 4\sqrt{x+2} \end{array}[/latex]
6. [latex]\begin{array}[b]{ccc} & \text{?} & \\ {e}^{ln\left(x\right)} &\leftrightarrow & x \end{array}[/latex]
7. [latex]\begin{array}[b]{ccc} & \text{?} & \\ {sin}\left(3x\right) &\leftrightarrow & 3{sin}\left(x\right) \end{array}[/latex]
8. [latex]\begin{array}[b]{ccc} & \text{?} & \\ \sqrt{9{x}^{2}+40} &\leftrightarrow & 3\sqrt{{x}^{2}+5} \end{array}[/latex]
9. [latex]\begin{array}[b]{ccc} & \text{?} & \\ \log\left(5x\right) &\leftrightarrow & 5\log\left(x\right) \end{array}[/latex]
10. [latex]\begin{array}[b]{ccc} & \text{?} & \\ \frac{{h}^{2}+2h}{h} &\leftrightarrow & {h}^{2}+2 \end{array}[/latex]
11. [latex]\begin{array}[b]{ccc} & \text{?} & \\ \frac{1}{x-2} &\leftrightarrow & \frac{1}{x}-\frac{1}{2} \end{array}[/latex]
Answers to Section 4.5 Problems
1. False. [latex]{x}^{2}[/latex] and [latex]4[/latex] are added. They cannot be evaluated separately.
2. False. [latex]{\left(3{e}^{x}\right)}^{2}=9{e}^{2x}[/latex]
3. False. [latex]{x}^{2}[/latex] in the numerator is added to 5. It cannot be cancelled before we add. Only common factors in the numerator and denominator can be cancelled – NOT common terms.
4. True
5. False. The 4 can be factored from the terms inside the radical. However, it can’t leave the radical without taking the square root. The equivalent expression here would be [latex]2\sqrt{x+2}[/latex].
6. True. In fact, anytime a number [latex]b[/latex] is raised to the log of the same base, the result is always the argument of the log. That is, [latex]{b}^{\log_{b}\left(x\right)}=x[/latex] always.
7. False. [latex]3x[/latex] represents [latex]3[/latex] times an angle of measure [latex]x[/latex] degrees/radians around the unit circle. [latex]3{sin}\left(x\right)[/latex] represents [latex]3[/latex] times the [latex]y-[/latex]coordinate of angle [latex]x[/latex].
8. True.
9. False. [latex]\log\left(3x\right)=y[/latex] means [latex]3x={10}^{y}[/latex]. [latex]3\log\left(x\right)=y[/latex] means [latex]x={10}^{\frac{y}{3}}[/latex].
10. False. [latex]\frac{{h}^{2}+2h}{h}=\frac{\cancel{h}\left(h+2\right)}{\cancel{h}}=h+2[/latex]
11. False. [latex]\frac{1}{x}-\frac{1}{2}=\frac{2}{2x}-\frac{x}{2x}=\frac{2-x}{2x}[/latex]